Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how the brain ages

12.09.2012
The ageing process has its roots deep within the cells and molecules that make up our bodies. Experts have previously identified the molecular pathway that react to cell damage and stems the cell's ability to divide, known as cell senescence.

However, in cells that do not have this ability to divide, such as neurons in the brain and elsewhere, little was understood of the ageing process. Now a team of scientists at Newcastle University, led by Professor Thomas von Zglinicki have shown that these cells follow the same pathway.

This challenges previous assumptions on cell senescence and opens new areas to explore in terms of treatments for conditions such as dementia, motor neuron disease or age-related hearing loss.

Newcastle University's Professor Thomas von Zglinicki who led the research said: "We want to continue our work looking at the pathways in human brains as this study provides us with a new concept as to how damage can spread from the first affected area to the whole brain."

Working with the University's special colony of aged mice, the scientists have discovered that ageing in neurons follows exactly the same rules as in senescing fibroblasts, the cells which divide in the skin to repair wounds.

DNA damage responses essentially re-program senescent fibroblasts to produce and secrete a host of dangerous substances including oxygen free radicals or reactive oxygen species (ROS) and pro-inflammatory signalling molecules. This makes senescent cells the 'rotten apple in a basket' that can damage and spoil the intact cells in their neighbourhood. However, so far it was always thought that ageing in cells that can't divide - post-mitotic, non-proliferating cells - like neurons would follow a completely different pathway.

Now, this research explains that in fact ageing in neurons follows exactly the same rules as in senescing fibroblasts.

Professor von Zglinicki, professor of Cellular Gerontology at Newcastle University said: "We will now need to find out whether the same mechanisms we detected in mouse brains are also associated with brain ageing and cognitive loss in humans. We might have opened up a short-cut towards understanding brain ageing, should that be the case."

Dr Diana Jurk, who did most of this work during her PhD in the von Zglinicki group, said: "It was absolutely fascinating to see how ageing processes that we always thought of as completely separate turned out to be identical. Suddenly so much disparate knowledge came together and made sense."

The research contributes to the Newcastle Initiative on Changing Age, the University's response to the societal challenge of Ageing, seeking new ways to make the most of the extensive opportunities associated with increasing human longevity.

The team want to further study the mechanism using the unique resource of the Newcastle Brain Bank.

Karen Bidewell | EurekAlert!
Further information:
http://www.ncl.ac.uk

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>