Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover bioluminescent 'green bombers' from the deep sea

24.08.2009
Orbs lobbed by mysterious worms burst into brilliant light, thought to be a defensive measure

In the latest proof that the oceans continue to offer remarkable findings and much of their vastness remains to be explored, scientists at Scripps Institution of Oceanography at UC San Diego and their colleagues have discovered a unique group of worms that live in the depths of the ocean.

The discoveries feature worms—nicknamed "green bombers"—that can release body parts that produce a brilliant green bioluminescent display.

The discovery is described in the August 21 issue of the journal Science and is led by Karen Osborn of Scripps Oceanography.

The researchers introduce seven previously unknown species of swimming worms in the annelid phylum ranging from 18 to 93 millimeters (.7 to 3.6 inches) in length. They were discovered by the scientists using remotely operated vehicles at depths between 1,800 and 3,700 meters (5,900 and 12,140 feet). The first species described in the paper has been given the scientific name Swima bombiviridis, referring to its swimming ability and the green bombs.

Osborn says one key aspect of the discoveries is that the newly found worms are not rare. Opportunities to witness such animals and collect and study them, however, have been extremely rare.

"We found a whole new group of fairly large, extraordinary animals that we never knew anything about before," said Osborn, a post-doctoral researcher in the Marine Biology Research Division at Scripps. "These are not rare animals. Often when we see them they number in the hundreds. What's unique is that their habitat is really hard to sample."

Largely transparent except for the gut area, the worms propel themselves with fans of long bristles that form swimming paddles.

"The depths between 1,000 and 4,000 meters (3,280 and 13,120 feet) form the biggest habitat on Earth and also the least explored," said Scripps Professor Greg Rouse, a coauthor of the paper and curator of Scripps Benthic Invertebrate Collection. "With fairly limited time on submersible vehicles, mainly off California, we've picked up seven new species. It goes to show that we have much more exploration ahead and who knows what else we'll discover?"

Each of the species features a variety of elaborate head appendages. Five of them are equipped with luminescent structures, the "bombs," that are fluid-filled spheres that suddenly burst into light when released by the animal, glowing intensely for several seconds before slowly fading.

Due to the bright lights of the submersible, scientists were not able to witness bomb-casting in the worm's natural habitat, but rather on ships after the animals were captured. While the scientists speculate that the bombs are used as a defensive mechanism against potential predators, more studies are needed to fully understand the process.

Rouse says the green bombers in the newly discovered clade, (a common ancestor and all its descendant organisms), are fascinating from an evolutionary standpoint. Looking closely at their relatives that live on the seafloor, it appears the bombs were once gills that evolutionarily transformed over time.

"The relatives have gills that appear to be in exactly the same places as the bombs," said Rouse. "The gills can fall off very easily so there's a similarity of being detachable, but for some reason the gills have transformed to become these glowing little detachable spheres."

Osborn continues to probe many of the various adaptations the worms have made since evolving into swimming species. The challenges faced by animals living in a three-dimensional open water habitat above the seafloor are very different than those faced by animals living on the seafloor. These include locating new food sources, finding ways to maintain optimal depth and grappling with predators that come from various directions.

"I'm interested in how animals have evolved in the water column," said Osborn. "These worms are great examples. How does a worm transform into a wonderful glowing animal?"

In addition to Osborn and Rouse, coauthors of the Science paper include Steven Haddock of the Monterey Bay Aquarium Research Institute, Fredrik Pleijel of the University of Göteborg in Sweden and Laurence Madin of the Woods Hole Oceanographic Institution (WHOI).

The research was supported by Scripps Institution of Oceanography, a University of California President's Postdoctoral Fellowship, the David and Lucile Packard Foundation, NOAA, WHOI and the National Geographic Society.

Note to broadcast and cable producers: UC San Diego provides an on-campus satellite uplink facility for live or pre-recorded television interviews. Please phone or e-mail the media contact listed above to arrange an interview.

Scripps Institution of Oceanography: scripps.ucsd.edu

Scripps News: scrippsnews.ucsd.edu

Scripps Institution of Oceanography, at UC San Diego, is one of the oldest, largest and most important centers for global science research and education in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $155 million from federal, state and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>