Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover animal-like urea cycle in tiny diatoms in the ocean

12.05.2011
Cycle enables marine phytoplankton to use carbon and nitrogen from their environment

Scientists have discovered that marine diatoms, tiny phytoplankton abundant in the sea, have an animal-like urea cycle, and that this cycle enables the diatoms to efficiently use carbon and nitrogen from their environment.

The researchers, from the J. Craig Venter Institute (JCVI) and other institutions, published their findings in this week's issue of the journal Nature.

The team, led by lead author Andrew Allen from JCVI and co-author Chris Bowler, Institute of Biology, Ecole Normale Supérieure, Paris, believes that the cycle could be a reason for the domination of diatoms in marine environments, especially after upwelling events--the upward movement of nutrient rich waters from the deep ocean to the surface.

In response to ocean upwelling, diatoms are able to quickly recover from prolonged periods of nutrient deprivation and rapidly proliferate.

"This study provides fascinating insights into how diatoms have evolved to become the dominant primary producers in many ocean regions," says David Garrison, program director in the National Science Foundation's (NSF) Division of Ocean Sciences, which funded the research along with NSF's Division of Molecular and Cellular Biosciences.

Diatoms have unique cell walls made of silica. They are key organisms for understanding the environmental health of marine ecosystems, and are responsible for much of the carbon and oxygen production in the ocean.

Diatom photosynthesis in ocean environments is also responsible for about one fifth of the oxygen in the atmosphere.

In previous research, Allen, Bowler and colleagues sequenced the genome of the first pennate diatom, Phaeodactylum tricornutum.

In that research, they developed new methods for determining the origin of diatom genes. They also looked at nutrient metabolism in diatoms, beginning with iron metabolism.

Building on that work, Allen and colleagues explored the evolutionary history of diatoms, specifically P. tricornutum, and cellular mechanisms for nutrient utilization in the environment, leading to the finding that diatoms have a functional urea cycle.

This was a stunning discovery, says Allen, because it was thought that the urea cycle originated with the metazoan (animal) branch of life.

There it has played an important role in facilitating a wide range of physiological innovations in vertebrates.

For example, urea synthesis enables rapid control of minerals and salts in the blood in animals such as sharks, skates, rays and bony fish, and ammonia detoxification associated with water retention in amphibians and mammals.

The latter was likely a prerequisite for life on land, and subsequently enabled the biochemical pathways necessary for processing a high-protein diet.

Allen and others have now shown that the urea cycle originated hundreds of millions of years before the appearance of metazoans.

The team used RNA interference techniques to partially silence a key urea cycle enzyme in diatoms.

Paper co-author Alisdair Fernie of the Max-Planck Institute of Molecular Plant Physiology evaluated the metabolite profile of diatoms with and without an impaired urea cycle.

Then Allen analyzed the data and found that urea cycle metabolites are critical for cellular recycling of carbon and nitrogen.

The metabolites are also important for facilitating the rapid onset of exponential growth characteristic of diatom recovery from nutrient starvation.

"It appears that the animal urea cycle, critical for cellular export of carbon and nitrogen wastes, was co-opted from an ancestral pathway that originally evolved as a nitrogen and carbon recycling and recovery mechanism," says Allen.

"This is a very interesting finding we didn't expect to see, and essentially changes the way we view diatoms relative to animals and plants."

The work also suggests that diatoms have followed a fundamentally different evolutionary path from plants--the dominant oxygen producers in terrestrial environments, green algae, and other closely related organisms.

Rather, prior to evolutionary acquisition of photosynthetic machinery, the ancestors of diatoms were possibly more closely related to the ancestors of animals than to plants.

This relatedness has resulted in diatoms and animals sharing some similar biochemical pathways such as the urea cycle.

Although it appears that animals and diatoms ultimately use the urea cycle for different purposes, they are evolutionarily linked in a way that animals and plants are not.

Along with Allen, Bowler, Fernie and other colleagues from JCVI, Ecole Normale Supérieure, and Max-Planck Institute, Germany, researchers from the Biology Centre ASCR, the Institute of Parasitology and University of South Bohemia, Czech Republic; the University Federal de Viçosa, Brazil; and the Institute of Hydrobiology, Chinese Academy of Sciences, China, contributed to this work.

The research was also funded by the JCVI, the European Commission on Diatomics Project, the Agence Nationale de la Recherche in France, and the Czech Science Foundation.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>