Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover animal-like urea cycle in tiny diatoms in the ocean

12.05.2011
Cycle enables marine phytoplankton to use carbon and nitrogen from their environment

Scientists have discovered that marine diatoms, tiny phytoplankton abundant in the sea, have an animal-like urea cycle, and that this cycle enables the diatoms to efficiently use carbon and nitrogen from their environment.

The researchers, from the J. Craig Venter Institute (JCVI) and other institutions, published their findings in this week's issue of the journal Nature.

The team, led by lead author Andrew Allen from JCVI and co-author Chris Bowler, Institute of Biology, Ecole Normale Supérieure, Paris, believes that the cycle could be a reason for the domination of diatoms in marine environments, especially after upwelling events--the upward movement of nutrient rich waters from the deep ocean to the surface.

In response to ocean upwelling, diatoms are able to quickly recover from prolonged periods of nutrient deprivation and rapidly proliferate.

"This study provides fascinating insights into how diatoms have evolved to become the dominant primary producers in many ocean regions," says David Garrison, program director in the National Science Foundation's (NSF) Division of Ocean Sciences, which funded the research along with NSF's Division of Molecular and Cellular Biosciences.

Diatoms have unique cell walls made of silica. They are key organisms for understanding the environmental health of marine ecosystems, and are responsible for much of the carbon and oxygen production in the ocean.

Diatom photosynthesis in ocean environments is also responsible for about one fifth of the oxygen in the atmosphere.

In previous research, Allen, Bowler and colleagues sequenced the genome of the first pennate diatom, Phaeodactylum tricornutum.

In that research, they developed new methods for determining the origin of diatom genes. They also looked at nutrient metabolism in diatoms, beginning with iron metabolism.

Building on that work, Allen and colleagues explored the evolutionary history of diatoms, specifically P. tricornutum, and cellular mechanisms for nutrient utilization in the environment, leading to the finding that diatoms have a functional urea cycle.

This was a stunning discovery, says Allen, because it was thought that the urea cycle originated with the metazoan (animal) branch of life.

There it has played an important role in facilitating a wide range of physiological innovations in vertebrates.

For example, urea synthesis enables rapid control of minerals and salts in the blood in animals such as sharks, skates, rays and bony fish, and ammonia detoxification associated with water retention in amphibians and mammals.

The latter was likely a prerequisite for life on land, and subsequently enabled the biochemical pathways necessary for processing a high-protein diet.

Allen and others have now shown that the urea cycle originated hundreds of millions of years before the appearance of metazoans.

The team used RNA interference techniques to partially silence a key urea cycle enzyme in diatoms.

Paper co-author Alisdair Fernie of the Max-Planck Institute of Molecular Plant Physiology evaluated the metabolite profile of diatoms with and without an impaired urea cycle.

Then Allen analyzed the data and found that urea cycle metabolites are critical for cellular recycling of carbon and nitrogen.

The metabolites are also important for facilitating the rapid onset of exponential growth characteristic of diatom recovery from nutrient starvation.

"It appears that the animal urea cycle, critical for cellular export of carbon and nitrogen wastes, was co-opted from an ancestral pathway that originally evolved as a nitrogen and carbon recycling and recovery mechanism," says Allen.

"This is a very interesting finding we didn't expect to see, and essentially changes the way we view diatoms relative to animals and plants."

The work also suggests that diatoms have followed a fundamentally different evolutionary path from plants--the dominant oxygen producers in terrestrial environments, green algae, and other closely related organisms.

Rather, prior to evolutionary acquisition of photosynthetic machinery, the ancestors of diatoms were possibly more closely related to the ancestors of animals than to plants.

This relatedness has resulted in diatoms and animals sharing some similar biochemical pathways such as the urea cycle.

Although it appears that animals and diatoms ultimately use the urea cycle for different purposes, they are evolutionarily linked in a way that animals and plants are not.

Along with Allen, Bowler, Fernie and other colleagues from JCVI, Ecole Normale Supérieure, and Max-Planck Institute, Germany, researchers from the Biology Centre ASCR, the Institute of Parasitology and University of South Bohemia, Czech Republic; the University Federal de Viçosa, Brazil; and the Institute of Hydrobiology, Chinese Academy of Sciences, China, contributed to this work.

The research was also funded by the JCVI, the European Commission on Diatomics Project, the Agence Nationale de la Recherche in France, and the Czech Science Foundation.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>