Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Discover an Ancient Odor-Detecting Mechanism in Insects

A newly discovered family of receptors in the fly nose fills in a missing piece of the insect olfactory system -- and also suggests a new role for a class of receptors long believed to be confined to the depths of the brain.

In 1913 Theodore Roosevelt added cartographer to his resume when he and his crew ventured up an unspeakably dangerous and uncharted tributary named the River of Doubt.

Now, on a charting expedition of their own, Rockefeller University scientists have completed a journey that has also defied expectation. In work to be published in the January 9 issue of Cell, the team reports the discovery of a new family of receptors in the fly nose, a finding that not only fills in a missing piece in the organizational logic of the insect olfactory system but also unearths one of the most ancient mechanisms that organisms have evolved to smell.

The work, led by Leslie B. Vosshall, head of the Laboratory of Neurogenetics and Behavior, revamps traditional ideas regarding the roles of ionotropic glutamate receptors, proteins that reside deep in the brain at the synapses. There, they grab glutamate molecules and quickly relay messages from one nerve cell to the next, helping animals learn, move and remember. But Vosshall's group now shows that insects do not relegate these receptors to the depths of the brain. They also put them to use elsewhere: in the nose.

"On the surface it's a completely absurd idea," says Vosshall, who is also a Howard Hughes Medical Institute investigator. "We know what these proteins do; they sit at the synapse and mediate fast neuronal communication. So the idea that the fly has massively expanded the number of these receptors and positioned them to interact with small molecules in the air seems very strange. But if you think about it, it makes sense. The process is the same, but rather than grabbing small molecules at the synapse, they're grabbing small molecules from the air."

The project began two years ago, when Vosshall and Richard Benton, then a postdoc in her lab, noticed a group of six ionotropic glutamate receptor genes while sifting through the fly genome. Although this group was recognized 10 years ago, ever since the genome was sequenced, the genes did not have a known function, in part because it was assumed they must be similar to any other ionotropic glutamate receptor deep in the fly brain. But to Vosshall and Benton, who is now at the Center for Integrative Genomics in Lausanne, Switzerland, that didn't matter.

Vosshall and her team wondered whether these receptors could in fact represent the "missing" receptors thought to exist in the fly's "nose" -- its two antennae. Each antenna is divided into three types of smell neurons. Scientists have characterized the receptors that detect odors in two of these types but those receptors were mysteriously absent in the third, a swath of territory known as the coeloconic sensilla. "It has been shown that cells in the coeloconic sensilla detect odors," Vosshall says. "It's just that we didn't know how they did it."

The team showed that these receptors, which the Vosshall lab named ionotropic receptors, do in fact explain how cells in coeloconic sensilla detect odors. First, they showed that they are expressed in complex combinatorial patterns at the sensory end of olfactory neurons where they have access to and can scan the outside world for odors. They then showed that when these receptors are expressed in the cells in the coeloconic sensilla, the cells respond to odors. Finally, the researchers showed that when they plucked a receptor -- say one that detects an odor that resembles a mix of grass and honey -- out of its native cell and genetically embedded it in a different cell, the new cell would now detect that odor.

Although it is still unclear why insects have developed two sets of chemosensory receptors -- olfactory receptors and ionotropic receptors -- the work raises questions regarding their evolutionary origin. Ten years ago, researchers at New York University revealed that plants, which detect soil nutrients and chemicals in the air, also express glutamate receptors, suggesting that the ancestral origin of glutamate receptors may have been to detect small molecules in the air, rather than small molecules in the brain.

"In a way, these receptors were very well hidden because everyone assumed that they were extra glutamate receptors that were unlikely to be of interest," explains Vosshall. "All we did to find them was searched for a gene family of unknown function -- and left our preconceived notions aside."

This work was funded in part by grants from the Foundation for the National Institutes of Health through the Grand Challenges in Global Health Initiative and the National Institutes of Health.

Thania Benios | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>