Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover a Number of Novel Genetic Defects Which Cause Oesophageal Cancer

02.04.2014

Latest findings by a team of international scientists led by Singapore-based researchers reveal the genomic landscape of oesophageal squamous carcinoma

A team of scientists from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore and National University Cancer Institute Singapore (NCIS), and their collaborators from the Cedars-Sinai Medical Centre, UCLA School of Medicine, demonstrated that a number of novel genetic defects are able to induce oesophageal cancer.

The research group, led by Professor H. Phillip Koeffler, Senior Principal Investigator at CSI Singapore and Deputy Director of NCIS, has conducted a successful comprehensive genomic study of oesophageal squamous carcinoma, a type of very aggressive cancer prevalent in Singapore and Southeast Asia.

This novel study was first published online in the prestigious journal Nature Genetics on 30 March 2014.

In this study, the researchers comprehensively investigated a large variety of genetic lesions which arose from oesophageal squamous carcinoma. The results showed enrichment of genetic abnormalities that affect several important cellular process and pathways in human cells, which promote the development of this malignancy. The scientists also uncovered a number of novel candidate genes that may make the cancer sensitive to chemotherapy. The researchers’ findings provide a molecular basis for the comprehensive understanding of the pathophysiology of oesophageal carcinoma as well as for developing novel therapies for this deadly disease. These groundbreaking results have immediate relevance for cancer researchers, as well as for clinical oncologists who currently do not have effective therapeutic agents to treat this type of cancer.

Dr Lin Dechen, Research Fellow at CSI Singapore and first author of the research paper, noted, “Our findings are very relevant to Singapore and the region because this disease is endemic to Southeast Asia. More importantly, many potential therapeutic drugs have surfaced from our analysis, with some of them already in use for treating other types of tumours. We are more than excited to test their efficacy in oesophageal cancer.”

Prof Koeffler said, “Oesophageal squamous cancer is one of most common causes of cancer-related death, and is particularly prevalent in Southeast Asia. We wanted to understand this major burden on the local public health system and to help find solutions. By completely investigating all human genes at the single nucleotide level, our current findings provide an enhanced road map for the study of the molecular basis underlying this somewhat neglected malignancy.”

With the discovery of these previously unrecognised genetic defects, Prof Koeffler and his team will explore the detailed molecular mechanisms in the next phase of research. In addition, the scientists will evaluate whether some of these defects can be used in the clinic to cure this disease.

Kimberley WANG | newswise
Further information:
http://www.nus.edu.sg

Further reports about: CSI Cancer Genetic Medical Southeast carcinoma defects effective genes malignancy treating

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>