Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover a Number of Novel Genetic Defects Which Cause Oesophageal Cancer

02.04.2014

Latest findings by a team of international scientists led by Singapore-based researchers reveal the genomic landscape of oesophageal squamous carcinoma

A team of scientists from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore and National University Cancer Institute Singapore (NCIS), and their collaborators from the Cedars-Sinai Medical Centre, UCLA School of Medicine, demonstrated that a number of novel genetic defects are able to induce oesophageal cancer.

The research group, led by Professor H. Phillip Koeffler, Senior Principal Investigator at CSI Singapore and Deputy Director of NCIS, has conducted a successful comprehensive genomic study of oesophageal squamous carcinoma, a type of very aggressive cancer prevalent in Singapore and Southeast Asia.

This novel study was first published online in the prestigious journal Nature Genetics on 30 March 2014.

In this study, the researchers comprehensively investigated a large variety of genetic lesions which arose from oesophageal squamous carcinoma. The results showed enrichment of genetic abnormalities that affect several important cellular process and pathways in human cells, which promote the development of this malignancy. The scientists also uncovered a number of novel candidate genes that may make the cancer sensitive to chemotherapy. The researchers’ findings provide a molecular basis for the comprehensive understanding of the pathophysiology of oesophageal carcinoma as well as for developing novel therapies for this deadly disease. These groundbreaking results have immediate relevance for cancer researchers, as well as for clinical oncologists who currently do not have effective therapeutic agents to treat this type of cancer.

Dr Lin Dechen, Research Fellow at CSI Singapore and first author of the research paper, noted, “Our findings are very relevant to Singapore and the region because this disease is endemic to Southeast Asia. More importantly, many potential therapeutic drugs have surfaced from our analysis, with some of them already in use for treating other types of tumours. We are more than excited to test their efficacy in oesophageal cancer.”

Prof Koeffler said, “Oesophageal squamous cancer is one of most common causes of cancer-related death, and is particularly prevalent in Southeast Asia. We wanted to understand this major burden on the local public health system and to help find solutions. By completely investigating all human genes at the single nucleotide level, our current findings provide an enhanced road map for the study of the molecular basis underlying this somewhat neglected malignancy.”

With the discovery of these previously unrecognised genetic defects, Prof Koeffler and his team will explore the detailed molecular mechanisms in the next phase of research. In addition, the scientists will evaluate whether some of these defects can be used in the clinic to cure this disease.

Kimberley WANG | newswise
Further information:
http://www.nus.edu.sg

Further reports about: CSI Cancer Genetic Medical Southeast carcinoma defects effective genes malignancy treating

More articles from Life Sciences:

nachricht Clock stars: Astrocytes keep time for brain, behavior
27.03.2017 | Washington University in St. Louis

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>