Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover a new way to enhance nerve growth following injury

22.04.2014

New research published today out of the University of Calgary's Hotchkiss Brain Institute (HBI) uncovers a mechanism to promote growth in damaged nerve cells as a means to restore connections after injury.

Dr. Doug Zochodne and his team have discovered a key molecule that directly regulates nerve cell growth in the damaged nervous system. His study was published in the prestigious journal Nature Communications, with lead authors Drs. Kim Christie and Anand Krishnan.

"We made the surprising discovery that a protein called Retinoblastoma (Rb) is present in adult neurons," explains Zochodne. "This protein appears to normally act as a brake – preventing nerve growth. What we have shown is that by inactivating Rb, we can release the brake and coax nerves to grow much faster," says Zochodne, a professor in the Department of Clinical Neurosciences.

Zochodne and his team decided to look for Rb in nerve cells because of its known role in regulating cell growth elsewhere in the body.

"We know that cancer is characterized by excessive cell growth and we also know that Rb is often functioning abnormally in cancer," says Zochodne. "So if cancer is able to release this brake and increase cell growth, we thought we'd try to mimic this same action in nerve cells and encourage growth where we want it."

The researchers were able to shut down Rb for a short amount of time and did not observe any negative results, leading them to feel optimistic that this could one day be used as a safe treatment for patients suffering from nerve damage.

So far, Zochodne is only investigating this technique in the peripheral nervous system. Peripheral nerves connect the brain and spinal cord to the body and without them, there is no movement or sensation. Peripheral nerve damage can be incredibly debilitating, with patients experiencing symptoms like pain, tingling, numbness or difficulty coordinating hands, feet, arms or legs.

For example, diabetic neuropathy is more common than multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis (ALS) combined. More than half of all diabetics have some form of nerve pain and currently there is no treatment to stop damage or reverse it.

Developing safe and effective therapies for conditions such as peripheral nerve disorders requires the ability to take investigations from cells in a petri dish to patients in a clinic. Zochodne and his team have been able to do that thanks in part to a preclinical facility that opened at the HBI in 2010. The Regeneration Unit in Neurobiology (RUN) was created through a partnership between the HBI, the University of Calgary and the Canada-Alberta Western Economic Partnership Agreement.

"The RUN facility has been critical for this research, says Zochodne. "It provides the resources and cutting-edge equipment that we need all in one facility. RUN has allowed us to take this idea from nerve cells, to animal models and eventually will help us investigate whether it could be a feasible treatment in humans. It's an incredible asset".

###

This research was funded by the Canadian Institutes of Health Research.

Marta Cyperling | Eurek Alert!
Further information:
http://www.ucalgary.ca

Further reports about: HBI Neurobiology Regeneration damage diabetic injury movement protein

More articles from Life Sciences:

nachricht From rigid to flexible
29.08.2016 | Technische Universität Dresden

nachricht Moth takes advantage of defensive compounds in Physalis fruits
26.08.2016 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

3-D-printed structures 'remember' their shapes

29.08.2016 | Materials Sciences

From rigid to flexible

29.08.2016 | Life Sciences

Sensor systems identify senior citizens at risk of falling within 3 weeks

29.08.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>