Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover a new way to enhance nerve growth following injury

22.04.2014

New research published today out of the University of Calgary's Hotchkiss Brain Institute (HBI) uncovers a mechanism to promote growth in damaged nerve cells as a means to restore connections after injury.

Dr. Doug Zochodne and his team have discovered a key molecule that directly regulates nerve cell growth in the damaged nervous system. His study was published in the prestigious journal Nature Communications, with lead authors Drs. Kim Christie and Anand Krishnan.

"We made the surprising discovery that a protein called Retinoblastoma (Rb) is present in adult neurons," explains Zochodne. "This protein appears to normally act as a brake – preventing nerve growth. What we have shown is that by inactivating Rb, we can release the brake and coax nerves to grow much faster," says Zochodne, a professor in the Department of Clinical Neurosciences.

Zochodne and his team decided to look for Rb in nerve cells because of its known role in regulating cell growth elsewhere in the body.

"We know that cancer is characterized by excessive cell growth and we also know that Rb is often functioning abnormally in cancer," says Zochodne. "So if cancer is able to release this brake and increase cell growth, we thought we'd try to mimic this same action in nerve cells and encourage growth where we want it."

The researchers were able to shut down Rb for a short amount of time and did not observe any negative results, leading them to feel optimistic that this could one day be used as a safe treatment for patients suffering from nerve damage.

So far, Zochodne is only investigating this technique in the peripheral nervous system. Peripheral nerves connect the brain and spinal cord to the body and without them, there is no movement or sensation. Peripheral nerve damage can be incredibly debilitating, with patients experiencing symptoms like pain, tingling, numbness or difficulty coordinating hands, feet, arms or legs.

For example, diabetic neuropathy is more common than multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis (ALS) combined. More than half of all diabetics have some form of nerve pain and currently there is no treatment to stop damage or reverse it.

Developing safe and effective therapies for conditions such as peripheral nerve disorders requires the ability to take investigations from cells in a petri dish to patients in a clinic. Zochodne and his team have been able to do that thanks in part to a preclinical facility that opened at the HBI in 2010. The Regeneration Unit in Neurobiology (RUN) was created through a partnership between the HBI, the University of Calgary and the Canada-Alberta Western Economic Partnership Agreement.

"The RUN facility has been critical for this research, says Zochodne. "It provides the resources and cutting-edge equipment that we need all in one facility. RUN has allowed us to take this idea from nerve cells, to animal models and eventually will help us investigate whether it could be a feasible treatment in humans. It's an incredible asset".

###

This research was funded by the Canadian Institutes of Health Research.

Marta Cyperling | Eurek Alert!
Further information:
http://www.ucalgary.ca

Further reports about: HBI Neurobiology Regeneration damage diabetic injury movement protein

More articles from Life Sciences:

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

nachricht A New Discovery in the Fight against Cancer: Tumor Cells Switch to a Different Mode
29.04.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>