Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover a new way to enhance nerve growth following injury

22.04.2014

New research published today out of the University of Calgary's Hotchkiss Brain Institute (HBI) uncovers a mechanism to promote growth in damaged nerve cells as a means to restore connections after injury.

Dr. Doug Zochodne and his team have discovered a key molecule that directly regulates nerve cell growth in the damaged nervous system. His study was published in the prestigious journal Nature Communications, with lead authors Drs. Kim Christie and Anand Krishnan.

"We made the surprising discovery that a protein called Retinoblastoma (Rb) is present in adult neurons," explains Zochodne. "This protein appears to normally act as a brake – preventing nerve growth. What we have shown is that by inactivating Rb, we can release the brake and coax nerves to grow much faster," says Zochodne, a professor in the Department of Clinical Neurosciences.

Zochodne and his team decided to look for Rb in nerve cells because of its known role in regulating cell growth elsewhere in the body.

"We know that cancer is characterized by excessive cell growth and we also know that Rb is often functioning abnormally in cancer," says Zochodne. "So if cancer is able to release this brake and increase cell growth, we thought we'd try to mimic this same action in nerve cells and encourage growth where we want it."

The researchers were able to shut down Rb for a short amount of time and did not observe any negative results, leading them to feel optimistic that this could one day be used as a safe treatment for patients suffering from nerve damage.

So far, Zochodne is only investigating this technique in the peripheral nervous system. Peripheral nerves connect the brain and spinal cord to the body and without them, there is no movement or sensation. Peripheral nerve damage can be incredibly debilitating, with patients experiencing symptoms like pain, tingling, numbness or difficulty coordinating hands, feet, arms or legs.

For example, diabetic neuropathy is more common than multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis (ALS) combined. More than half of all diabetics have some form of nerve pain and currently there is no treatment to stop damage or reverse it.

Developing safe and effective therapies for conditions such as peripheral nerve disorders requires the ability to take investigations from cells in a petri dish to patients in a clinic. Zochodne and his team have been able to do that thanks in part to a preclinical facility that opened at the HBI in 2010. The Regeneration Unit in Neurobiology (RUN) was created through a partnership between the HBI, the University of Calgary and the Canada-Alberta Western Economic Partnership Agreement.

"The RUN facility has been critical for this research, says Zochodne. "It provides the resources and cutting-edge equipment that we need all in one facility. RUN has allowed us to take this idea from nerve cells, to animal models and eventually will help us investigate whether it could be a feasible treatment in humans. It's an incredible asset".

###

This research was funded by the Canadian Institutes of Health Research.

Marta Cyperling | Eurek Alert!
Further information:
http://www.ucalgary.ca

Further reports about: HBI Neurobiology Regeneration damage diabetic injury movement protein

More articles from Life Sciences:

nachricht Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools
30.06.2016 | Rice University

nachricht A protein coat helps chromosomes keep their distance
30.06.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016 | Health and Medicine

Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools

30.06.2016 | Life Sciences

A drop of water as a model for the interplay of adhesion and stiction

30.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>