Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover a natural molecule to treat type 2 diabetes

13.05.2014

Researchers at the Université Laval Faculty of Medicine, the Quebec Heart and Lung Institute Research Center, and the Institute of Nutrition and Functional Foods have discovered a natural molecule that could be used to treat insulin resistance and type 2 diabetes.

The molecule, a derivative of omega-3 fatty acids, mimics some of the effects of physical exercise on blood glucose regulation. The details of the discovery made by Professor André Marette and his team are published today in Nature Medicine.

It has been known for some time that omega-3 fatty acids can help reduce insulin resistance caused by a diet high in saturated fat. In their earlier work, André Marette and his colleagues had linked these effects to a bioactive lipid called protectin D1.

In investigating further, they discovered that another member of the same family named protectin DX (PDX) triggers the production and release of interleukin 6 (IL-6) in muscle cells, a response that also occurs during physical exercise.

"Once in the bloodstream, IL-6 controls glucose levels in two ways: it signals to the liver to reduce glucose production and acts directly on the muscles to increase glucose uptake," explains the researcher who is also Scientific Director of Université Laval's Institute of Nutrition and Functional Foods.

The researchers used transgenic mice lacking the IL-6 gene to demonstrate the link between PDX and IL-6. PDX had very little effect on the control of blood glucose in these animals. In similar tests conducted on obese diabetic rats, PDX was shown to dramatically improve responsiveness to insulin, the hormone which regulates blood glucose.

"The mechanism of action described for PDX represents a new therapeutic strategy for improving glucose control," proposes the researcher. "Its efficacy may be comparable with that of certain drugs currently prescribed to control glycemia."

Even though PDX appears to mimic the effect of physical exercise by triggering IL-6 secretion in the muscles, André Marette warns that it is not a substitute for physical activity. "Exercise has cardiovascular and other hormonal benefits that go well beyond its metabolic effects on the muscles," adds the researcher whose work is supported by the Canadian Institutes of Health Research (CIHR) and the Canadian Diabetes Association.

Professor Marette and Université Laval have filed a patent application for PDX and its therapeutic applications. "For us, the next step is to demonstrate the antidiabetic effects in humans and determine the receptor through which PDX acts."

###

In addition to André Marette, the study is authored by Phillip White, Philippe St-Pierre, Alexandre Charbonneau, Patricia Mitchell, Emmanuelle St-Amand, and Bruno Marcotte.

Information:

André Marette
Faculty of Medicine
Université Laval
Quebec Heart and Lung Institute
Institute of Nutrition and Functional Foods
418-656-8711 ext. 3781
Andre.Marette@criucpq.ulaval.ca

Jean-François Huppé | Eurek Alert!
Further information:
http://www.ulaval.ca

Further reports about: Canadian IL-6 Laval Medicine Nutrition acids blood muscles reduce therapeutic

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>