Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover: A Chemical Signal in Human Tears

07.01.2011
Weizmann Institute researchers have uncovered the presence of a chemical signal in emotional tears.

Emotional crying is a universal, uniquely human behavior. When we cry, we clearly send all sorts of emotional signals. In a paper published online today in Science Express, scientists at the Weizmann Institute have demonstrated that some of these signals are chemically encoded in the tears themselves. Specifically, they found that merely sniffing a woman’s tears – even when the crying woman is not present -- reduces sexual arousal in men.

Humans, like most animals, expel various compounds in body fluids that give off subtle messages to other members of the species. A number of studies in recent years, for instance, have found that substances in human sweat can carry a surprising range of emotional and other signals to those who smell them.

But tears are odorless. In fact, in a first experiment led by Shani Gelstein, Yaara Yeshurun and their colleagues in the lab of Prof. Noam Sobel in the Weizmann Institute’s Neurobiology Department, the researchers first obtained emotional tears from female volunteers watching sad movies in a secluded room and then tested whether men could discriminate the smell of these tears from that of saline. The men could not.

In a second experiment, male volunteers sniffed either tears or a control saline solution, and then had these applied under their nostrils on a pad while they made various judgments regarding images of women's faces on a computer screen. The next day, the test was repeated -- the men who were previously exposed to tears getting saline and vice versa. The tests were double blinded, meaning neither the men nor the researchers performing the trials knew what was on the pads. The researchers found that sniffing tears did not influence the men's estimates of sadness or empathy expressed in the faces. To their surprise, however, sniffing tears negatively affected the sex appeal attributed to the faces.

To further explore the finding, male volunteers watched emotional movies after similarly sniffing tears or saline. Throughout the movies, participants were asked to provide self-ratings of mood as they were being monitored for such physiological measures of arousal as skin temperature, heart rate, etc. Self-ratings showed that the subjects’ emotional responses to sad movies were no more negative when exposed to women’s tears, and the men “smelling” tears showed no more empathy. They did, however, rate their sexual arousal a bit lower. The physiological measures, however, told a clearer story. These revealed a pronounced tear-induced drop in physiological measures of arousal, including a significant dip in testosterone – a hormone related to sexual arousal.

Finally, in a fourth trial, Sobel and his team repeated the previous experiment within an fMRI machine that allowed them to measure brain activity. The scans revealed a significant reduction in activity levels in brain areas associated with sexual arousal after the subjects had sniffed tears.

Sobel: “This study raises many interesting questions. What is the chemical involved? Do different kinds of emotional situations send different tear-encoded signals? Are women’s tears different from, say, men's tears? Children’s tears? This study reinforces the idea that human chemical signals – even ones we’re not conscious of – affect the behavior of others.”

Human emotional crying was especially puzzling to Charles Darwin, who identified functional antecedents to most emotional displays -- for example, the tightening of the mouth in disgust, which he thought originated as a response to tasting spoiled food. But the original purpose of emotional tears eluded him. The current study has offered an answer to this riddle: Tears may serve as a chemosignal. Sobel points out that some rodent tears are known to contain such chemical signals. "The uniquely human behavior of emotional tearing may not be so uniquely human after all,” he says.

The work was authored by Shani Gelstein, Yaara Yeshurun, Liron Rozenkrantz, Sagit Shushan, Idan Frumin, Yehudah Roth and Noam Sobel, was conducted in collaboration with the Edith Wolfson Medical Center, Holon.

Prof. Noam Sobel’s research is supported by the James S. McDonnell Foundation 21st Century Science Scholar in Understanding Human Cognition Program; the Minerva Foundation; the European Research Council; and Regina Wachter, NY.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Yivsam Azgad | idw
Further information:
http://wis-wander.weizmann.ac.il

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>