Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover a 'master key' to unlock new treatments for autoimmune disorders

30.09.2011
New research published in the Journal of Leukocyte Biology demonstrates how the human intestine generates and maintains 'immune tolerance' under healthy conditions

Bethesda, MD—Imagine a single drug that would treat most, if not all, autoimmune disorders, such as asthma, inflammatory bowel disease, and Lupus. That might not be so hard to do thanks to a team of researchers who have discovered a molecule normally used by the body to prevent unnecessary immune reactions.

This molecule, pronounced "alpha v beta 6," normally keeps our immune systems from overreacting when food passes through our bodies, and it may be the key that unlocks entirely new set of treatments for autoimmune disorders. This discovery was recently published in research report appearing the Journal of Leukocyte Biology (https://www.jleukbio.org).

"Currently we do not have special methods to radically treat most immune diseases; all we can do is to temporarily inhibit the clinical symptoms for those diseases," said Ping-Chang Yang, a researcher involved in the work from the Department of Pathology and Molecular Medicine at McMaster University in Ontario, Canada. "Our findings have the potential to repair the compromised immune tolerant system so as to lead the body immune system to 'correct' the ongoing pathological conditions by itself."

Scientists made this discovery in mice when they noticed that their intestines secreted alphavbeta6, when absorbing food. Alphavbeta6, together with the absorbed food, induced the body to produce immune tolerant cells, which ensured that the food did not cause an excessive immune reaction. Researchers then generated alphavbeta6 using cultured intestinal cells and found that both could be used to generate the immune tolerant cells needed to reduce or eliminate out-of-control immune reactions.

"Development of new treatments and cures for diseases is usually a long process involving a series of incremental steps taken from the laboratory all the way through to the patient's bedside," said John Wherry, Ph.D., Deputy Editor of the Journal of Leukocyte Biology. "Occasionally, however, scientists make large leaps forward instead. While considerable work remains to determine whether or not this discovery will directly translate into new therapies, the alphavbeta6 discovery reported by these scientists is exciting, if not stunning."

The Journal of Leukocyte Biology (http://www.jleukbio.org) publishes peer-reviewed manuscripts on original investigations focusing on the cellular and molecular biology of leukocytes and on the origins, the developmental biology, biochemistry and functions of granulocytes, lymphocytes, mononuclear phagocytes and other cells involved in host defense and inflammation. The Journal of Leukocyte Biology is published by the Society for Leukocyte Biology.

Details: Xiao Chen, Chun-Hua Song, Bai-Sui Feng, Tong-Li Li, Ping Li, Peng-Yuan Zheng, Xian-Ming Chen, Zhou Xing, and Ping-Chang Yang. Intestinal epithelial cell-derived integrin áâ6 plays an important role in the induction of regulatory T cells and inhibits an antigen-specific Th2 response. J Leukoc Biol. 2011 90:751-759; doi: 10.1189/jlb.1210696 ; http://www.jleukbio.org/content/90/4/751.abstract

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

nachricht Party discipline for jumping genes
22.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Party discipline for jumping genes

22.09.2017 | Life Sciences

The pyrenoid is a carbon-fixing liquid droplet

22.09.2017 | Life Sciences

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>