Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover a 'master key' to unlock new treatments for autoimmune disorders

30.09.2011
New research published in the Journal of Leukocyte Biology demonstrates how the human intestine generates and maintains 'immune tolerance' under healthy conditions

Bethesda, MD—Imagine a single drug that would treat most, if not all, autoimmune disorders, such as asthma, inflammatory bowel disease, and Lupus. That might not be so hard to do thanks to a team of researchers who have discovered a molecule normally used by the body to prevent unnecessary immune reactions.

This molecule, pronounced "alpha v beta 6," normally keeps our immune systems from overreacting when food passes through our bodies, and it may be the key that unlocks entirely new set of treatments for autoimmune disorders. This discovery was recently published in research report appearing the Journal of Leukocyte Biology (https://www.jleukbio.org).

"Currently we do not have special methods to radically treat most immune diseases; all we can do is to temporarily inhibit the clinical symptoms for those diseases," said Ping-Chang Yang, a researcher involved in the work from the Department of Pathology and Molecular Medicine at McMaster University in Ontario, Canada. "Our findings have the potential to repair the compromised immune tolerant system so as to lead the body immune system to 'correct' the ongoing pathological conditions by itself."

Scientists made this discovery in mice when they noticed that their intestines secreted alphavbeta6, when absorbing food. Alphavbeta6, together with the absorbed food, induced the body to produce immune tolerant cells, which ensured that the food did not cause an excessive immune reaction. Researchers then generated alphavbeta6 using cultured intestinal cells and found that both could be used to generate the immune tolerant cells needed to reduce or eliminate out-of-control immune reactions.

"Development of new treatments and cures for diseases is usually a long process involving a series of incremental steps taken from the laboratory all the way through to the patient's bedside," said John Wherry, Ph.D., Deputy Editor of the Journal of Leukocyte Biology. "Occasionally, however, scientists make large leaps forward instead. While considerable work remains to determine whether or not this discovery will directly translate into new therapies, the alphavbeta6 discovery reported by these scientists is exciting, if not stunning."

The Journal of Leukocyte Biology (http://www.jleukbio.org) publishes peer-reviewed manuscripts on original investigations focusing on the cellular and molecular biology of leukocytes and on the origins, the developmental biology, biochemistry and functions of granulocytes, lymphocytes, mononuclear phagocytes and other cells involved in host defense and inflammation. The Journal of Leukocyte Biology is published by the Society for Leukocyte Biology.

Details: Xiao Chen, Chun-Hua Song, Bai-Sui Feng, Tong-Li Li, Ping Li, Peng-Yuan Zheng, Xian-Ming Chen, Zhou Xing, and Ping-Chang Yang. Intestinal epithelial cell-derived integrin áâ6 plays an important role in the induction of regulatory T cells and inhibits an antigen-specific Th2 response. J Leukoc Biol. 2011 90:751-759; doi: 10.1189/jlb.1210696 ; http://www.jleukbio.org/content/90/4/751.abstract

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>