Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists devise strategy in bid to beat viruses

20.07.2010
Scientists have developed a new way to target viruses which could increase the effectiveness of antiviral drugs.

Instead of attacking the virus itself, the method developed at the University of Edinburgh alters the conditions which viruses need to survive and multiply.

By making the site of infection less hospitable for the virus, the virus becomes less able to mutate and build up resistance to drugs. The researchers were also able to target more than one virus at the same time.

Viruses take up residence in host cells within our body, which produce proteins that enable the virus to multiply and survive.

The study, published in the journal Proceedings of the National Academy of Sciences (PNAS), analysed molecules known as microRNAs, which regulate how much of these proteins are made.

The scientists were able to manipulate the microRNA levels, which enabled them to control a network of proteins and stop viruses from growing.

Most existing antiviral therapies only work against one virus. However, by adapting the virus host environment the researchers were able to target different types of viruses.

It is hoped that the research could lead to new treatments for patients suffering from a range of infections.

Dr Amy Buck, of the University's Centre for Immunity, Infection & Evolution, said: "A problem with current antiviral therapies, which generally target the virus, is that viruses can mutate to become resistant. Since new viral strains emerge frequently, and many infections are difficult to diagnose and treat, it is important to find new ways of targeting infection. Our hope is that we will be able to use host-directed therapies to supplement the natural immune response and disable viruses by taking away what they need to survive."

Scientists studied the herpes family of viruses, which can also cause cancer with the Epstein-Barr virus, and the Semliki Forest virus, which is mainly spread by mosquitoes.

Both viruses have different characteristics. Viruses from the herpes family replicate inside the nuclei of cells, while the Semliki Forest multiplies outside the nucleus of a cell.

Further research has begun to look at how this method could be used to target influenza.

The study was funded by the Wellcome Trust and the Biotechnology and Biological Sciences Research Council.

Tara Womersley | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>