Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists developed new technology for the diagnosis of cancer cells


The type of therapy a cancer patient receives, largely depends on the trained eye of a pathologist.

Investigating diseased organs and tissues under the microscope is one of their tasks. However, human judgment is, by its very nature, subject to a certain degree of variation. To enhance the quality of diagnosis, scientists at Vetmeduni Vienna, the Medical University of Vienna and the Ludwig Boltzmann Institute for Cancer Research have developed a software that specifically identifies cell structures and proteins in order to provide reliable diagnoses. The scientists published their data in the journal Plos One.

The tissue section through a prostate reveals whether cancer cells are present.

Photo: Lukas Kenner

Together with the company Tissuegnostics, the pathologist Lukas Kenner and his colleagues have developed a software that is able to identify cancer cells in tissue sections and demonstrate the presence of specific biomarkers on cells. The overall information provides a precise picture of the disease and leads to the most suitable treatment.

According to the results of the study, "Two independent pathologists concur with each other only in regard of every third diagnosis."

"The recently developed software offers, for the first time, the option of eliminating the so-called inter-observer-variability, which is the systematic variability of judgement among different observers," chief investigators Lukas Kenner and Helmut Dolznig explain.

Software identifies the severity of cancer

The scientists investigated and analyzed 30 liver cell carcinomas, and clearly assigned these to the categories "negative" or "highly positive" with the help of the software. For this purpose the scientists analyzed the expression of specific proteins like Stat5 and JunB, which play an important role in the emergence of cancer. The software utilizes specific algorithms and highly sensitive digital photography, and is able to more clearly depict the matrix of cells and the cell nucleus than the view achieved by the human eye using a microscope.

Changes in cancer cells can be specified more exactly

"We have been using the software in research for several years. The technology will obviously not replace pathologists, but is a supplementary technology that markedly enhances the reliability of the diagnosis," Kenner states. Kenner also believes that the new technology will help to specify the categories in which in cancer cells are classified with greater accuracy in the future.

"Cancer therapies are expensive. The new software will help to make a better assessment as to when expensive therapy is justified and also identify those cases in which it is not necessary and the patient can be spared the burden of such treatment," Kenner says.

New tool for "precision medicine"

The so-called “precision medicine”, an advancement of personalized medicine, focusses on the health of individuals. With the aid of molecular biology-based methods, the ideal treatment is found for the individual patient.

This type of medicine is especially promising for the treatment of cancer. Tumors differ from person to person. Pathologists investigate tumor tissue on the molecular level and thus establish the most suitable type of therapy. "For instance, cancer cells bear different surface molecules. A suitable drug must target the correct molecule in order to counteract the growth of the tumor," Kenner explains. "Every patient should receive the most suitable therapy. Only such an approach is ethically justifiable and sensible in economic terms.”

The article „Reliable quantification of protein expression and cellular localization in histological sections“, by Michaela Schlederer, Kristina M. Mueller, Johannes Haybäck, Susanne Heider, Nicole Huttary, Margit Rosner, Markus Hengstschläger, Richard Moriggl, Helmut Dolznig and Lukas Kenner was published on the 11th of July 2014 in the journal PLOS ONE.

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,200 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms.

Scientific Contact:
Prof. Lukas Kenner
University of Veterinary Medicine, Vienna, Austria (Vetmeduni Vienna)
T +43 664 1188385

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153

Weitere Informationen:

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Further reports about: Medicine Veterinary Vetmeduni cell structures diagnosis pathologists proteins tumor tissue

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Custom sequences for polymers using visible light

22.03.2018 | Materials Sciences

Scientists develop tiny tooth-mounted sensors that can track what you eat

22.03.2018 | Health and Medicine

Mat baits, hooks and destroys pollutants in water

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>