Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists developed new technology for the diagnosis of cancer cells

14.07.2014

The type of therapy a cancer patient receives, largely depends on the trained eye of a pathologist.

Investigating diseased organs and tissues under the microscope is one of their tasks. However, human judgment is, by its very nature, subject to a certain degree of variation. To enhance the quality of diagnosis, scientists at Vetmeduni Vienna, the Medical University of Vienna and the Ludwig Boltzmann Institute for Cancer Research have developed a software that specifically identifies cell structures and proteins in order to provide reliable diagnoses. The scientists published their data in the journal Plos One.


The tissue section through a prostate reveals whether cancer cells are present.

Photo: Lukas Kenner

Together with the company Tissuegnostics, the pathologist Lukas Kenner and his colleagues have developed a software that is able to identify cancer cells in tissue sections and demonstrate the presence of specific biomarkers on cells. The overall information provides a precise picture of the disease and leads to the most suitable treatment.

According to the results of the study, "Two independent pathologists concur with each other only in regard of every third diagnosis."

"The recently developed software offers, for the first time, the option of eliminating the so-called inter-observer-variability, which is the systematic variability of judgement among different observers," chief investigators Lukas Kenner and Helmut Dolznig explain.

Software identifies the severity of cancer

The scientists investigated and analyzed 30 liver cell carcinomas, and clearly assigned these to the categories "negative" or "highly positive" with the help of the software. For this purpose the scientists analyzed the expression of specific proteins like Stat5 and JunB, which play an important role in the emergence of cancer. The software utilizes specific algorithms and highly sensitive digital photography, and is able to more clearly depict the matrix of cells and the cell nucleus than the view achieved by the human eye using a microscope.

Changes in cancer cells can be specified more exactly

"We have been using the software in research for several years. The technology will obviously not replace pathologists, but is a supplementary technology that markedly enhances the reliability of the diagnosis," Kenner states. Kenner also believes that the new technology will help to specify the categories in which in cancer cells are classified with greater accuracy in the future.

"Cancer therapies are expensive. The new software will help to make a better assessment as to when expensive therapy is justified and also identify those cases in which it is not necessary and the patient can be spared the burden of such treatment," Kenner says.

New tool for "precision medicine"

The so-called “precision medicine”, an advancement of personalized medicine, focusses on the health of individuals. With the aid of molecular biology-based methods, the ideal treatment is found for the individual patient.

This type of medicine is especially promising for the treatment of cancer. Tumors differ from person to person. Pathologists investigate tumor tissue on the molecular level and thus establish the most suitable type of therapy. "For instance, cancer cells bear different surface molecules. A suitable drug must target the correct molecule in order to counteract the growth of the tumor," Kenner explains. "Every patient should receive the most suitable therapy. Only such an approach is ethically justifiable and sensible in economic terms.”

The article „Reliable quantification of protein expression and cellular localization in histological sections“, by Michaela Schlederer, Kristina M. Mueller, Johannes Haybäck, Susanne Heider, Nicole Huttary, Margit Rosner, Markus Hengstschläger, Richard Moriggl, Helmut Dolznig and Lukas Kenner was published on the 11th of July 2014 in the journal PLOS ONE. http://dx.plos.org/10.1371/journal.pone.0100822

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,200 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Prof. Lukas Kenner
University of Veterinary Medicine, Vienna, Austria (Vetmeduni Vienna)
T +43 664 1188385
lukas.kenner@meduniwien.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2014/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Further reports about: Medicine Veterinary Vetmeduni cell structures diagnosis pathologists proteins tumor tissue

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>