Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists developed new technology for the diagnosis of cancer cells

14.07.2014

The type of therapy a cancer patient receives, largely depends on the trained eye of a pathologist.

Investigating diseased organs and tissues under the microscope is one of their tasks. However, human judgment is, by its very nature, subject to a certain degree of variation. To enhance the quality of diagnosis, scientists at Vetmeduni Vienna, the Medical University of Vienna and the Ludwig Boltzmann Institute for Cancer Research have developed a software that specifically identifies cell structures and proteins in order to provide reliable diagnoses. The scientists published their data in the journal Plos One.


The tissue section through a prostate reveals whether cancer cells are present.

Photo: Lukas Kenner

Together with the company Tissuegnostics, the pathologist Lukas Kenner and his colleagues have developed a software that is able to identify cancer cells in tissue sections and demonstrate the presence of specific biomarkers on cells. The overall information provides a precise picture of the disease and leads to the most suitable treatment.

According to the results of the study, "Two independent pathologists concur with each other only in regard of every third diagnosis."

"The recently developed software offers, for the first time, the option of eliminating the so-called inter-observer-variability, which is the systematic variability of judgement among different observers," chief investigators Lukas Kenner and Helmut Dolznig explain.

Software identifies the severity of cancer

The scientists investigated and analyzed 30 liver cell carcinomas, and clearly assigned these to the categories "negative" or "highly positive" with the help of the software. For this purpose the scientists analyzed the expression of specific proteins like Stat5 and JunB, which play an important role in the emergence of cancer. The software utilizes specific algorithms and highly sensitive digital photography, and is able to more clearly depict the matrix of cells and the cell nucleus than the view achieved by the human eye using a microscope.

Changes in cancer cells can be specified more exactly

"We have been using the software in research for several years. The technology will obviously not replace pathologists, but is a supplementary technology that markedly enhances the reliability of the diagnosis," Kenner states. Kenner also believes that the new technology will help to specify the categories in which in cancer cells are classified with greater accuracy in the future.

"Cancer therapies are expensive. The new software will help to make a better assessment as to when expensive therapy is justified and also identify those cases in which it is not necessary and the patient can be spared the burden of such treatment," Kenner says.

New tool for "precision medicine"

The so-called “precision medicine”, an advancement of personalized medicine, focusses on the health of individuals. With the aid of molecular biology-based methods, the ideal treatment is found for the individual patient.

This type of medicine is especially promising for the treatment of cancer. Tumors differ from person to person. Pathologists investigate tumor tissue on the molecular level and thus establish the most suitable type of therapy. "For instance, cancer cells bear different surface molecules. A suitable drug must target the correct molecule in order to counteract the growth of the tumor," Kenner explains. "Every patient should receive the most suitable therapy. Only such an approach is ethically justifiable and sensible in economic terms.”

The article „Reliable quantification of protein expression and cellular localization in histological sections“, by Michaela Schlederer, Kristina M. Mueller, Johannes Haybäck, Susanne Heider, Nicole Huttary, Margit Rosner, Markus Hengstschläger, Richard Moriggl, Helmut Dolznig and Lukas Kenner was published on the 11th of July 2014 in the journal PLOS ONE. http://dx.plos.org/10.1371/journal.pone.0100822

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,200 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Prof. Lukas Kenner
University of Veterinary Medicine, Vienna, Austria (Vetmeduni Vienna)
T +43 664 1188385
lukas.kenner@meduniwien.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2014/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Further reports about: Medicine Veterinary Vetmeduni cell structures diagnosis pathologists proteins tumor tissue

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>