Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists develop new, more sensitive nanotechnology test for chemical DNA modifications

Researchers at The Johns Hopkins University School of Medicine in Baltimore have developed a novel test to screen for chemical modifications to DNA known as methylation. The technology potentially could be used both for early cancer diagnoses and for assessing patients' response to cancer therapies.

During methylation, healthy genes can be switched on or off potentially causing cancer without any changes in the underlying DNA sequence. The current methods for methylation screening, have significant drawbacks, explains lead study author Vasudev Bailey, a biomedical engineering Ph.D. candidate at Hopkins.

Methylation specific PCR, which copies specific DNA sequences millions of times within a few hours, may not be sensitive enough to detect small amounts of methylation, and real time PCR, which allows scientists to view increases in the amount of DNA as it is copied, needs to be run several times and can be expensive, he says.

The Hopkins-developed test makes PCR technology more sensitive and efficient, Bailey said. The work was presented at the American Association for Cancer Research's third International Conference on Molecular Diagnostics in Cancer Therapeutic Development being held September 22-25, 2008, in Philadelphia.

"The impact of detecting DNA methylation is profound, as it has been demonstrated that a larger number of tumor suppressor genes become inactivated through DNA methylation than by mutations," Bailey said. "Our method of methylation screening provides an easy, cost-effective and valuable tool for the early diagnosis of cancer, monitoring tumor behavior and measuring the response of tumors to targeted cancer therapies."

To test the technique, Bailey and colleagues treated segments of DNA with the chemical compound sodium bisulfate. This automatically converted unmethylated cytosines (one of the bases of DNA) to uracils (one of the bases of ribonucleic acid or RNA, which works with DNA to synthesize proteins), while leaving the methylated cytosines untouched.

Then the scientists used PCR with labeled primers to copy and label these DNA segments with the vitamin biotin. Next, they added quantum dots (molecules about a billionth of a meter in size with electrical properties) to the samples that had been coated with the protein streptavidin. Like a magnetic force, the biotin-coated methylated segments of DNA were attracted to the streptavidin coating the quantum dots, highlighting and quantifying DNA methylation.

The new test was sensitive enough to detect as little as 15 picograms of methylated DNA in the presence of a 10,000-fold excess of unmethylated coding sequences, or the equivalent of five cells. In addition, they demonstrated detection capability in as few as eight PCR cycles. In collaboration with his colleague Yi Zhang, also a PhD candidate at Johns Hopkins school of medicine, they were able to see results using very small samples (an average of 800 billionth of a liter per reaction and more than fifty times less sample and reagent as used currently) using a novel lab-on-chip system. This system allows for minimal handing of samples from the researcher, while allowing for simultaneous processing and analysis of multiple samples. Researchers have a provisional patent on the test.

In additional experiments, the researchers used the technology to accurately detect methylation for the gene ASC/TMS1, which promotes programmed cell death, in low concentrations of DNA from human sputum. This was accomplished with fewer steps and fewer PCR cycles. Scientists also used the test to quantify the amount of methylation reversal in bone marrow fluid samples taken from patients with myelodysplastic syndrome – a disorder in which bone marrow cells don't function normally – before and after they had been treated with medications.

Bailey said the new test allows scientists to detect methylation of multiple genes at the same time, or view methylated and unmethylated DNA at the same time. It also reveals the percentage of methylation at any given time.

Jeremy Moore | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Here comes the long-sought-after iron-munching microbe
25.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Novel method to benchmark and improve the performance of protein measumeasurement techniques
25.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>