Scientists Develop Promising Drug Candidates for Pain, Addiction

The two new drug scaffolds, described in a recent edition of The Journal of Biological Chemistry, offer researchers novel tools that act on a demonstrated therapeutic target, the kappa opioid receptor (KOR), which is located on nerve cells and plays a role in the release of the neurotransmitter dopamine. While compounds that activate KOR are associated with positive therapeutic effects, they often also recruit a molecule known as ßarrestin2 (beta arrestin), which is associated with depressed mood and severely limits any therapeutic potential.

“Compounds that act at kappa receptors may provide a means for treating addiction and for treating pain; however, there is the potential for the development of depression or dysphoria associated with this receptor target,” said Laura Bohn, a TSRI associate professor who led the study. “There is evidence that the negative feelings caused by kappa receptor drugs may be, in part, due to receptor actions through proteins called beta arrestins. Developing compounds that activate the receptors without recruiting beta arrestin function may serve as a means to improve the therapeutic potential and limit side effects.”

The new compounds are called “biased agonists,” activating the receptor without engaging the beta arrestins.

Research Associate Lei Zhou, first author of the study with Research Associate Kimberly M. Lovell, added, “The importance of these biased agonists is that we can manipulate the activation of one particular signaling cascade that produces analgesia, but not the other one that could lead to dysphoria or depression.”

The researchers note that the avoidance of depression is particularly important in addiction treatment, where depressed mood can play a role in relapse.

The two drug candidates also have a high affinity and selectivity for KOR over other opioid receptors and are able to pass through the blood-brain barrier. Given these promising attributes, the scientists plan to continue developing the compounds.

In addition to Bohn, Lovell and Zhou, other authors of the study, “Development of Functionally Selective, Small Molecule Agonists at Kappa Opioid Receptors,” include Angela M. Phillips, John M. Streicher, Edward Stahl, Cullen L. Schmid, Michael D. Cameron, Peter Hodder and Franck Madoux of The Scripps Research Institute; the chemistry was led by Kevin J. Frankowski, Stephen R. Slauson, Thomas E. Prisinzano and Jeffrey Aubé of the University of Kansas. For more information on the study, see http://www.jbc.org/content/288/51/36703

This work was supported by the National Institutes of Health (grant R01 DA031927).

About The Scripps Research Institute
The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-2666
Fax: 858-784-8136
press@scripps.edu

Media Contact

Eric Sauter EurekAlert!

More Information:

http://www.scripps.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors