Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Develop Promising Drug Candidates for Pain, Addiction

14.01.2014
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have described a pair of drug candidates that advance the search for new treatments for pain, addiction and other disorders.

The two new drug scaffolds, described in a recent edition of The Journal of Biological Chemistry, offer researchers novel tools that act on a demonstrated therapeutic target, the kappa opioid receptor (KOR), which is located on nerve cells and plays a role in the release of the neurotransmitter dopamine. While compounds that activate KOR are associated with positive therapeutic effects, they often also recruit a molecule known as ßarrestin2 (beta arrestin), which is associated with depressed mood and severely limits any therapeutic potential.

“Compounds that act at kappa receptors may provide a means for treating addiction and for treating pain; however, there is the potential for the development of depression or dysphoria associated with this receptor target,” said Laura Bohn, a TSRI associate professor who led the study. “There is evidence that the negative feelings caused by kappa receptor drugs may be, in part, due to receptor actions through proteins called beta arrestins. Developing compounds that activate the receptors without recruiting beta arrestin function may serve as a means to improve the therapeutic potential and limit side effects.”

The new compounds are called “biased agonists,” activating the receptor without engaging the beta arrestins.

Research Associate Lei Zhou, first author of the study with Research Associate Kimberly M. Lovell, added, “The importance of these biased agonists is that we can manipulate the activation of one particular signaling cascade that produces analgesia, but not the other one that could lead to dysphoria or depression.”

The researchers note that the avoidance of depression is particularly important in addiction treatment, where depressed mood can play a role in relapse.

The two drug candidates also have a high affinity and selectivity for KOR over other opioid receptors and are able to pass through the blood-brain barrier. Given these promising attributes, the scientists plan to continue developing the compounds.

In addition to Bohn, Lovell and Zhou, other authors of the study, “Development of Functionally Selective, Small Molecule Agonists at Kappa Opioid Receptors,” include Angela M. Phillips, John M. Streicher, Edward Stahl, Cullen L. Schmid, Michael D. Cameron, Peter Hodder and Franck Madoux of The Scripps Research Institute; the chemistry was led by Kevin J. Frankowski, Stephen R. Slauson, Thomas E. Prisinzano and Jeffrey Aubé of the University of Kansas. For more information on the study, see http://www.jbc.org/content/288/51/36703

This work was supported by the National Institutes of Health (grant R01 DA031927).

About The Scripps Research Institute
The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-2666
Fax: 858-784-8136
press@scripps.edu

Eric Sauter | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: Drug Delivery Pain therapy Scripps Small Molecule TSRI nerve cell opioid receptor

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>