Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop mouse model that could lead to new therapies for liver cancer

09.07.2012
Researchers have created the first mouse model demonstrating the role of a cancer promoting gene, Astrocyte elevated gene-1 (AEG-1), in hepatocellular carcinoma, or liver cancer. The mouse model represents a critical step in understanding the molecular mechanisms of liver cancer progression and could lead to novel therapies for the disease.

Insights from the mouse model were recently published in the journal Hepatology by a team of researchers led by Devanand Sarkar, M.B.B.S., Ph.D., Harrison Scholar at Virginia Commonwealth University (VCU) Massey Cancer Center, Blick Scholar and assistant professor in the Department of Human and Molecular Genetics and member of the VCU Institute of Molecular Medicine (VIMM) at VCU School of Medicine.

AEG-1 was originally cloned in the lab of the study's co-author, Paul B. Fisher, M.Ph., Ph.D., Thelma Newmeyer Corman Endowed Chair in Oncology Research and program co-leader of Cancer Molecular Genetics at Massey, professor and chair of the Department of Human and Molecular Genetics and director of VIMM.

"My colleagues and I have been researching the role of AEG-1 in cancer development for several years and have shown it is linked to a diverse array of cancers, including liver cancer," says Sarkar. "This mouse model represents a breakthrough in our ability to test and translate our laboratory findings."

The mouse model gave the researchers a deeper understanding of the role of AEG-1 in liver cancer. Sarkar and his team confirmed AEG-1 overexpression significantly accelerated the progression of liver cancer. It also caused steatosis, or fatty liver, a mechanism that promotes inflammation and cancer progression. In addition, the mouse model substantiated laboratory findings that suggested that AEG-1 plays a role in protecting liver cancer cells from chemotherapeutic drugs and alters tumor angiogenesis, or the way that new blood vessels are formed within the tumor.

The researchers plan to use the model to further explore the molecular mechanisms by which AEG-1 promotes liver cancer, including the role of AEG-1 in fat metabolism and obesity-related diseases.

"This model moves us forward in the research process by allowing us to test a variety of compounds that could inhibit AEG-1 and prevent the development and progression of liver cancer," says Sarkar. "Ultimately, we hope our efforts will lead to new therapies and save lives."
In addition to Fisher, Sarkar collaborated on this study with Jolene Windle, Ph.D., Catherine Dumur, Ph.D., Luni Emdad, Ph.D., Nitai Mukhopadhyay, Ph.D., and Philip Hylemon, Ph.D., from VCU Massey Cancer Center; Jyoti Srivastava, Ph.D., Ayesha Siddiq, Ph.D., Prasanna Kumar Santhekadur, Ph.D., Rachel Gredler, Ph.D. candidate, Xue-Ning Shen, M.D., Mark Subler, Ph.D., Chadia Robertson, Ph.D. candidate, and Jillian Stafflinger, lab specialist, from the Department of Human and Molecular Genetics at VCU School of Medicine; Dong Chen, M.D., from the Department of Pathology at VCU School of Medicine; Deepak Bhere, Ph.D., and Khalid Shah, Ph.D., from the Departments of Radiology and Neurology at Harvard Medical School; Rushdy Ahmad, Ph.D., from the Broad Institute of Harvard and Massachusetts Institute of Technology; and Shah Giashuddin, M.D., from New York Hospital Medical Center.

The full manuscript of this study is available online at: http://onlinelibrary.wiley.com/doi/10.1002/hep.25868/pdf.

Funding for this study was provided by grant R01 CA138540 from the National Cancer Institute, grant R01 CA134721from the National Institutes of Health and grants from the James S. McDonnell Foundation and Samuel Waxman Cancer Research Foundation. The study was also supported, in part, with funding from VCU Massey Cancer Center's NIH-NCI Cancer Center Support Grant P30 CA016059.

News directors: Broadcast access to VCU Massey Cancer Center experts is available through VideoLink ReadyCam. ReadyCam transmits video and audio via fiber optics through a system that is routed to your newsroom. To schedule a live or taped interview, contact John Wallace, (804) 628-1550.

About VCU Massey Cancer Center

VCU Massey Cancer Center is one of only 66 National Cancer Institute-designated institutions in the country that leads and shapes America's cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and clinical trials, and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It has one of the largest offerings of clinical trials in Virginia and serves patients in Richmond and in four satellite locations. Its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and ultimately to cure cancer. Visit Massey online at www.massey.vcu.edu or call 877-4-MASSEY for more information.

About VCU and the VCU Medical Center

Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located in downtown Richmond, VCU enrolls more than 31,000 students in 222 degree and certificate programs in the arts, sciences and humanities. Sixty-six of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see www.vcu.edu.

John Wallace | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>