Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop the first atomic view of key genetic processes

26.08.2010
In a landmark study to be published in the journal Nature, scientists have been able to create the first picture of genetic processes that happen inside every cell of our bodies. Using a 3-D visualization method called X-ray crystallography, Song Tan, an associate professor of biochemistry and molecular biology at Penn State University, has built the first-ever image of a protein interacting with the nucleosome -- DNA packed tightly into space-saving bundles organized around a protein core. The research is expected to aid future investigations into diseases such as cancer.

As the genetic blueprint of life, DNA must be deciphered or "read," even when densely packed into nucleosomes. The nucleosome is therefore a key target of genetic processes in a cell and a focus of scientific investigations into how normal and diseased cells work. Previous studies at Penn State and other research institutions led to the discovery of chromatin enzymes -- proteins that act to turn specific genes on or off by binding to the nucleosome.

Since the three-dimensional structure of the nucleosome was determined 13 years ago, scientists have wondered how chromatin enzymes recognize and act on the nucleosome to regulate gene expression and other processes in a cell. "We needed to visualize how these enzymes are able to read such a complicated structure as the nucleosome," Tan said.

To tackle this problem, Ravindra D. Makde, a postdoctoral member of the research team led by Tan, grew molecular crystals of the protein RCC1 (regulator of chromosome condensation, a protein critical for proper separation of chromosomes during cell division) bound to the nucleosome, and used X-ray crystallography to determine the atomic structure of the complex. "Our results showed that the RCC1 protein binds to opposite sides of the nucleosome -- similar to pedals positioned on a tricycle wheel." The structure provides atomic details of how an enzyme can recognize both DNA and components of the protein core of the nucleosome. Unexpectedly, the structure also showed how DNA can stretch as it wraps into a nucleosome. "These findings provide the basis for understanding how RCC1 and other chromatin enzymes interact with DNA as it is packaged into chromatin in our cells," Tan said.

The investigations were performed at the Penn State Center for Eukaryotic Gene Regulation, a multidisciplinary center focused on understanding the molecular basis for how genes are turned off and on in our bodies. "For years, the research community has been at an impasse," said Frank Pugh, Director of the center and the Willaman Professor in Molecular Biology at Penn State. "We were limited to only speculating how cellular proteins might bind the nucleosome. Now, with this structure, we are one step closer to understanding how cells read chromatin to regulate gene expression."

After nearly a decade of working to this goal, Tan and his team are excited to see the intricate interactions between a chromatin protein and the nucleosome. They are, however, even more enthusiastic about future prospects. "Our goal now is to determine the structures of other biologically and medically important chromatin enzymes bound to the nucleosome," said Tan. "We anticipate such studies will explain fundamental genetic processes and provide the basis for new therapeutics against human diseases such as cancer."

In addition to Tan and Makde, other researchers who contributed to this project include Joseph R. England, a Penn State undergraduate when he started this research and currently an MD/Ph.D. student at Temple University, and Hemant P. Yennawar, a senior research associate in the Department of Biochemistry and Molecular Biology at Penn State. This research was funded, in part, by the National Institutes of Health.

[ Katrina Voss ]

CONTACTS
Song Tan: 814-865-3355, sxt30@psu.edu.
Barbara Kennedy (PIO): 814-863-4682, science@psu.edu

Barbara Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>