Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop new approaches to predict the environmental safety of chemicals

24.08.2011
Baylor researchers develop new method for Europe’s REACH regulation

Baylor University environmental researchers have proposed in a new study a different approach to predict the environmental safety of chemicals by using data from other similar chemicals.

For many chemicals in use every day, scientists do not have enough information to understand all of the effects on the environment and human health. In response to this, the European Union enacted the REACH regulation, which places greater responsibility on industry to manage the risks from chemicals and to provide safety information on the substances. The Registration, Evaluation, Authorisation and Restriction of Chemical Substances (REACH) regulation was enacted in 2006 and requires manufacturers and importers to gather information on the properties of their chemical substances and to register the information in a central database. Regulators say the goal of REACH is to improve the protection of human health and the environment through better and earlier identification of the harmful properties of chemical substances.

In the Baylor study, researchers suggest using data from other chemicals, such as what concentrations can cause toxicity in aquatic organisms to predict the toxicity of another chemical that scientists expect causes toxicity in the same way.

"This study proposes one approach to advance the three R's of sustainability – reduce, replace, refine – for studying biological impacts of chemicals in the environment," said study co-author Dr. Bryan Brooks, associate professor of environmental science and biomedical studies and director of environmental health science at Baylor. "Identifying, testing and implementing new approaches to leverage available information to support better environmental decision-making remains a critical need around the world."

Baylor researchers used statistical and mathematical techniques called chemical toxicity distributions to understand the relative potency of two groups of chemicals. They then used these findings to develop environmental safety values, which they hope will help determine the environmental impacts of chemical substances without unnecessary testing on animals.

"The biggest hurdle we face when protecting public health and the environment is the general lack of information," said study co-author Dr. Spencer Williams, a research scientist at Baylor. "The approach we propose should help prioritize the selection of chemicals and organisms for additional safety assessments. Instead of having to test similar chemicals on many organisms over and over again, scientists could estimate safety levels using fewer tests, which could be more efficient without compromising environmental safety."

The study appears online in the journal Environmental Toxicology and Chemistry.

ABOUT BAYLOR

Baylor University is a private Christian university and a nationally ranked research institution, characterized as having "high research activity" by the Carnegie Foundation for the Advancement of Teaching. The university provides a vibrant campus community for approximately 15,000 students by blending interdisciplinary research with an international reputation for educational excellence and a faculty commitment to teaching and scholarship. Chartered in 1845 by the Republic of Texas through the efforts of Baptist pioneers, Baylor is the oldest continually operating university in Texas. Located in Waco, Baylor welcomes students from all 50 states and more than 80 countries to study a broad range of degrees among its 11 nationally recognized academic divisions.

Matt Pene | EurekAlert!
Further information:
http://www.baylor.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>