Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop new approaches to predict the environmental safety of chemicals

24.08.2011
Baylor researchers develop new method for Europe’s REACH regulation

Baylor University environmental researchers have proposed in a new study a different approach to predict the environmental safety of chemicals by using data from other similar chemicals.

For many chemicals in use every day, scientists do not have enough information to understand all of the effects on the environment and human health. In response to this, the European Union enacted the REACH regulation, which places greater responsibility on industry to manage the risks from chemicals and to provide safety information on the substances. The Registration, Evaluation, Authorisation and Restriction of Chemical Substances (REACH) regulation was enacted in 2006 and requires manufacturers and importers to gather information on the properties of their chemical substances and to register the information in a central database. Regulators say the goal of REACH is to improve the protection of human health and the environment through better and earlier identification of the harmful properties of chemical substances.

In the Baylor study, researchers suggest using data from other chemicals, such as what concentrations can cause toxicity in aquatic organisms to predict the toxicity of another chemical that scientists expect causes toxicity in the same way.

"This study proposes one approach to advance the three R's of sustainability – reduce, replace, refine – for studying biological impacts of chemicals in the environment," said study co-author Dr. Bryan Brooks, associate professor of environmental science and biomedical studies and director of environmental health science at Baylor. "Identifying, testing and implementing new approaches to leverage available information to support better environmental decision-making remains a critical need around the world."

Baylor researchers used statistical and mathematical techniques called chemical toxicity distributions to understand the relative potency of two groups of chemicals. They then used these findings to develop environmental safety values, which they hope will help determine the environmental impacts of chemical substances without unnecessary testing on animals.

"The biggest hurdle we face when protecting public health and the environment is the general lack of information," said study co-author Dr. Spencer Williams, a research scientist at Baylor. "The approach we propose should help prioritize the selection of chemicals and organisms for additional safety assessments. Instead of having to test similar chemicals on many organisms over and over again, scientists could estimate safety levels using fewer tests, which could be more efficient without compromising environmental safety."

The study appears online in the journal Environmental Toxicology and Chemistry.

ABOUT BAYLOR

Baylor University is a private Christian university and a nationally ranked research institution, characterized as having "high research activity" by the Carnegie Foundation for the Advancement of Teaching. The university provides a vibrant campus community for approximately 15,000 students by blending interdisciplinary research with an international reputation for educational excellence and a faculty commitment to teaching and scholarship. Chartered in 1845 by the Republic of Texas through the efforts of Baptist pioneers, Baylor is the oldest continually operating university in Texas. Located in Waco, Baylor welcomes students from all 50 states and more than 80 countries to study a broad range of degrees among its 11 nationally recognized academic divisions.

Matt Pene | EurekAlert!
Further information:
http://www.baylor.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>