Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop a 'nanosubmarine' that delivers complementary molecules inside cells

26.06.2014

Researchers at the University of Miami and the University of Ulster have created nanoparticles that can transport interacting molecules into living cells.

With the continuing need for very small devices in therapeutic applications, there is a growing demand for the development of nanoparticles that can transport and deliver drugs to target cells in the human body.


The sequential transport of donors and acceptors across cell membranes with independent and dynamic nanocarriers enables energy transfer exclusively in the intracellular space with concomitant fluorescence activation.

Credit: Francisco Raymo, professor of Chemistry and director of the laboratory for molecular photonics, at the University of Miami College of Arts and Sciences

Recently, researchers created nanoparticles that under the right conditions, self-assemble – trapping complementary guest molecules within their structure. Like tiny submarines, these versatile nanocarriers can navigate in the watery environment surrounding cells and transport their guest molecules through the membrane of living cells to sequentially deliver their cargo.

Although the transport of molecules inside cells with nanoparticles has been previously achieved using various methods, researchers have developed nanoparticles capable of delivering and exchanging complementary molecules. For practical applications, these nanocarriers are highly desirable, explains Francisco Raymo, professor of chemistry in the University of Miami College of Arts and Sciences and lead investigator of this project.

"The ability to deliver distinct species inside cells independently and force them to interact, exclusively in the intracellular environment, can evolve into a valuable strategy to activate drugs inside cells," Raymo says.

The new nanocarriers are15 nanometers in diameter. They are supramolecular constructs made up of building blocks called amphiphilic polymers. These nanocarriers hold the guest molecules within the confines of their water-insoluble interior and use their water-soluble exterior to travel through an aqueous environment. As a result, these nanovehicles are ideal for transferring molecules that would otherwise be insoluble in water, across a liquid environment.

"Once inside a living cell, the particles mix and exchange their cargo. This interaction enables the energy transfer between the internalized molecules," says Raymo, director of the UM laboratory for molecular photonics. "If the complementary energy donors and acceptors are loaded separately and sequentially, the transfer of energy between them occurs exclusively within the intracellular space," he says. "As the energy transfer takes place, the acceptors emit a fluorescent signal that can be observed with a microscope."

Essential to this mechanism are the noncovalent bonds that loosely hold the supramolecular constructs together. These weak bonds exist between molecules with complementary shapes and electronic properties. They are responsible for the ability of the supramolecules to assemble spontaneously in liquid environments. Under the right conditions, the reversibility of these weak noncovalent contacts allows the supramolecular constructs to exchange their components as well as their cargo.

The experiments were conducted with cell cultures. It is not yet known if the nanoparticles can actually travel through the bloodstream.

"That would be the dream, but we have no evidence that they can actually do so," Raymo says. "However, this is the direction we are heading."

The next phase of this investigation involves demonstrating that this method can be used to do chemical reactions inside cells, instead of energy transfers.

"The size of these nanoparticles, their dynamic character and the fact that the reactions take place under normal biological conditions (at ambient temperature and neutral environment) makes these nanoparticles an ideal vehicle for the controlled activation of therapeutics, directly inside the cells," Raymo says.

The current study is titled "Intracellular guest exchange between dynamic supramolecular hosts." It's published in the Journal of the American Chemical Society. Other authors are John F. Callan, co-corresponding author of the study, from the School of Pharmacy and Pharmaceutical Sciences at the University of Ulster; Subramani Swaminathan and Janet Cusido from the UM's Laboratory for Molecular Photonics, Department of Chemistry in the College of Arts and Sciences; and Colin Fowley and Bridgeen McCuaghan, School of Pharmacy and Pharmaceutical Sciences at the University of Ulster.

###

http://www.miami.edu/news

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of our diversity of our University family, we strive to develop future leaders of our nation and the world.

Annette Gallagher | Eurek Alert!

Further reports about: Arts Pharmaceutical Pharmacy Raymo ability drugs inside nanoparticles reactions

More articles from Life Sciences:

nachricht Moth takes advantage of defensive compounds in Physalis fruits
26.08.2016 | Max-Planck-Institut für chemische Ökologie

nachricht Designing ultrasound tools with Lego-like proteins
26.08.2016 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>