Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop a 'nanosubmarine' that delivers complementary molecules inside cells

26.06.2014

Researchers at the University of Miami and the University of Ulster have created nanoparticles that can transport interacting molecules into living cells.

With the continuing need for very small devices in therapeutic applications, there is a growing demand for the development of nanoparticles that can transport and deliver drugs to target cells in the human body.


The sequential transport of donors and acceptors across cell membranes with independent and dynamic nanocarriers enables energy transfer exclusively in the intracellular space with concomitant fluorescence activation.

Credit: Francisco Raymo, professor of Chemistry and director of the laboratory for molecular photonics, at the University of Miami College of Arts and Sciences

Recently, researchers created nanoparticles that under the right conditions, self-assemble – trapping complementary guest molecules within their structure. Like tiny submarines, these versatile nanocarriers can navigate in the watery environment surrounding cells and transport their guest molecules through the membrane of living cells to sequentially deliver their cargo.

Although the transport of molecules inside cells with nanoparticles has been previously achieved using various methods, researchers have developed nanoparticles capable of delivering and exchanging complementary molecules. For practical applications, these nanocarriers are highly desirable, explains Francisco Raymo, professor of chemistry in the University of Miami College of Arts and Sciences and lead investigator of this project.

"The ability to deliver distinct species inside cells independently and force them to interact, exclusively in the intracellular environment, can evolve into a valuable strategy to activate drugs inside cells," Raymo says.

The new nanocarriers are15 nanometers in diameter. They are supramolecular constructs made up of building blocks called amphiphilic polymers. These nanocarriers hold the guest molecules within the confines of their water-insoluble interior and use their water-soluble exterior to travel through an aqueous environment. As a result, these nanovehicles are ideal for transferring molecules that would otherwise be insoluble in water, across a liquid environment.

"Once inside a living cell, the particles mix and exchange their cargo. This interaction enables the energy transfer between the internalized molecules," says Raymo, director of the UM laboratory for molecular photonics. "If the complementary energy donors and acceptors are loaded separately and sequentially, the transfer of energy between them occurs exclusively within the intracellular space," he says. "As the energy transfer takes place, the acceptors emit a fluorescent signal that can be observed with a microscope."

Essential to this mechanism are the noncovalent bonds that loosely hold the supramolecular constructs together. These weak bonds exist between molecules with complementary shapes and electronic properties. They are responsible for the ability of the supramolecules to assemble spontaneously in liquid environments. Under the right conditions, the reversibility of these weak noncovalent contacts allows the supramolecular constructs to exchange their components as well as their cargo.

The experiments were conducted with cell cultures. It is not yet known if the nanoparticles can actually travel through the bloodstream.

"That would be the dream, but we have no evidence that they can actually do so," Raymo says. "However, this is the direction we are heading."

The next phase of this investigation involves demonstrating that this method can be used to do chemical reactions inside cells, instead of energy transfers.

"The size of these nanoparticles, their dynamic character and the fact that the reactions take place under normal biological conditions (at ambient temperature and neutral environment) makes these nanoparticles an ideal vehicle for the controlled activation of therapeutics, directly inside the cells," Raymo says.

The current study is titled "Intracellular guest exchange between dynamic supramolecular hosts." It's published in the Journal of the American Chemical Society. Other authors are John F. Callan, co-corresponding author of the study, from the School of Pharmacy and Pharmaceutical Sciences at the University of Ulster; Subramani Swaminathan and Janet Cusido from the UM's Laboratory for Molecular Photonics, Department of Chemistry in the College of Arts and Sciences; and Colin Fowley and Bridgeen McCuaghan, School of Pharmacy and Pharmaceutical Sciences at the University of Ulster.

###

http://www.miami.edu/news

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of our diversity of our University family, we strive to develop future leaders of our nation and the world.

Annette Gallagher | Eurek Alert!

Further reports about: Arts Pharmaceutical Pharmacy Raymo ability drugs inside nanoparticles reactions

More articles from Life Sciences:

nachricht Why do animals fight members of other species?
24.04.2015 | University of California - Los Angeles

nachricht Is a small artificially composed virus fragment the key to a Chikungunya vaccine?
24.04.2015 | Paul-Ehrlich-Institut - Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Electrons Move Like Light in Three-Dimensional Solid

24.04.2015 | Materials Sciences

Connecting Three Atomic Layers Puts Semiconducting Science on Its Edge

24.04.2015 | Materials Sciences

Understanding the Body’s Response to Worms and Allergies

24.04.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>