Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop 'green' pretreatment of Miscanthus for biofuels

16.05.2013
Two University of Illinois scientists have developed an environmentally friendly and more economical way of pretreating Miscanthus in the biofuel production process.

"We pretreat the biomass with switchable butadiene sulfone in the presence of water to break down the plant cell wall, which consists of cellulose, hemicellulose, and lignin, the source of biofuels and value-added products," said Hao Feng, a U of I professor of food science and human nutrition who also has extensive research experience with biofuels.

The new technique is a green alternative to current industry practices because butadiene sulfone can be recovered at potentially high yields since the solvent's decomposition gases are also the raw materials for its production. This means that butadiene sulfone can be re-used after pretreatment, he added.

The commercial availability for both production and recovery of this chemical should allow for a transfer of these operations into a biorefinery, Feng said.

"It's a big advantage in terms of both economy and environmental impact," he added.

The current chemical pretreatment process uses relatively harsh conditions to break down the tough structure of grass and other biomass. Enzymes are then used to release the sugars that are converted to fuels through a fermentation process, Feng explained.

"These chemicals not only produce compounds that are toxic to fermenting microorganisms, they often result in by-products that have negative environmental impact," he said.

Why is this new solvent so important? "Pretreatment is the most expensive step in the production of biofuels and chemicals from lignocellulosic biomass," said J. Atilio de Frias, co-author of the study and a doctoral student in the Feng laboratory.

According to de Frias, butadiene sulfone has the unique ability to "switch" in equilibrium to 1,3-butadiene and sulfur dioxide at relatively low temperatures, forming sulfurous acid in the presence of water.

Using this relatively inexpensive and recoverable chemical to pretreat biomass in one step under mild conditions is definitely a step in the right direction, he said.

"At temperatures ranging from 90ºC to 110ºC, the sulfurous acid hydrolyzes hemicellulose. Then butadiene sulfone helps to solubilize lignin with most of the cellulose preserved for downstream enzymatic hydrolysis," he explained.

The scientists said their data shows promise for the separation of hemicellulose and lignin and for the preservation of cellulose. They were able to remove up to 58 percent of lignin and 91 percent of hemicellulose and preserved 90 to 99 percent of cellulose.

Feng said that this is the first time that this solvent has been successfully used as a pretreatment in biofuel production.

"We look forward to its testing and adoption by biofuel manufacturers that are working with Miscanthus and other biomass crops," he said.

"Switchable butadiene sulfone pretreatment of Miscanthus in the presence of water," co-authored by J. Atilio de Frias and Hao Feng, was published in Green Chemistry (2013, 15, 1067-1078).

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

nachricht X-ray experiments reveal two different types of water
27.06.2017 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>