Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop 'green' pretreatment of Miscanthus for biofuels

16.05.2013
Two University of Illinois scientists have developed an environmentally friendly and more economical way of pretreating Miscanthus in the biofuel production process.

"We pretreat the biomass with switchable butadiene sulfone in the presence of water to break down the plant cell wall, which consists of cellulose, hemicellulose, and lignin, the source of biofuels and value-added products," said Hao Feng, a U of I professor of food science and human nutrition who also has extensive research experience with biofuels.

The new technique is a green alternative to current industry practices because butadiene sulfone can be recovered at potentially high yields since the solvent's decomposition gases are also the raw materials for its production. This means that butadiene sulfone can be re-used after pretreatment, he added.

The commercial availability for both production and recovery of this chemical should allow for a transfer of these operations into a biorefinery, Feng said.

"It's a big advantage in terms of both economy and environmental impact," he added.

The current chemical pretreatment process uses relatively harsh conditions to break down the tough structure of grass and other biomass. Enzymes are then used to release the sugars that are converted to fuels through a fermentation process, Feng explained.

"These chemicals not only produce compounds that are toxic to fermenting microorganisms, they often result in by-products that have negative environmental impact," he said.

Why is this new solvent so important? "Pretreatment is the most expensive step in the production of biofuels and chemicals from lignocellulosic biomass," said J. Atilio de Frias, co-author of the study and a doctoral student in the Feng laboratory.

According to de Frias, butadiene sulfone has the unique ability to "switch" in equilibrium to 1,3-butadiene and sulfur dioxide at relatively low temperatures, forming sulfurous acid in the presence of water.

Using this relatively inexpensive and recoverable chemical to pretreat biomass in one step under mild conditions is definitely a step in the right direction, he said.

"At temperatures ranging from 90ºC to 110ºC, the sulfurous acid hydrolyzes hemicellulose. Then butadiene sulfone helps to solubilize lignin with most of the cellulose preserved for downstream enzymatic hydrolysis," he explained.

The scientists said their data shows promise for the separation of hemicellulose and lignin and for the preservation of cellulose. They were able to remove up to 58 percent of lignin and 91 percent of hemicellulose and preserved 90 to 99 percent of cellulose.

Feng said that this is the first time that this solvent has been successfully used as a pretreatment in biofuel production.

"We look forward to its testing and adoption by biofuel manufacturers that are working with Miscanthus and other biomass crops," he said.

"Switchable butadiene sulfone pretreatment of Miscanthus in the presence of water," co-authored by J. Atilio de Frias and Hao Feng, was published in Green Chemistry (2013, 15, 1067-1078).

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>