Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop 'green' pretreatment of Miscanthus for biofuels

16.05.2013
Two University of Illinois scientists have developed an environmentally friendly and more economical way of pretreating Miscanthus in the biofuel production process.

"We pretreat the biomass with switchable butadiene sulfone in the presence of water to break down the plant cell wall, which consists of cellulose, hemicellulose, and lignin, the source of biofuels and value-added products," said Hao Feng, a U of I professor of food science and human nutrition who also has extensive research experience with biofuels.

The new technique is a green alternative to current industry practices because butadiene sulfone can be recovered at potentially high yields since the solvent's decomposition gases are also the raw materials for its production. This means that butadiene sulfone can be re-used after pretreatment, he added.

The commercial availability for both production and recovery of this chemical should allow for a transfer of these operations into a biorefinery, Feng said.

"It's a big advantage in terms of both economy and environmental impact," he added.

The current chemical pretreatment process uses relatively harsh conditions to break down the tough structure of grass and other biomass. Enzymes are then used to release the sugars that are converted to fuels through a fermentation process, Feng explained.

"These chemicals not only produce compounds that are toxic to fermenting microorganisms, they often result in by-products that have negative environmental impact," he said.

Why is this new solvent so important? "Pretreatment is the most expensive step in the production of biofuels and chemicals from lignocellulosic biomass," said J. Atilio de Frias, co-author of the study and a doctoral student in the Feng laboratory.

According to de Frias, butadiene sulfone has the unique ability to "switch" in equilibrium to 1,3-butadiene and sulfur dioxide at relatively low temperatures, forming sulfurous acid in the presence of water.

Using this relatively inexpensive and recoverable chemical to pretreat biomass in one step under mild conditions is definitely a step in the right direction, he said.

"At temperatures ranging from 90ºC to 110ºC, the sulfurous acid hydrolyzes hemicellulose. Then butadiene sulfone helps to solubilize lignin with most of the cellulose preserved for downstream enzymatic hydrolysis," he explained.

The scientists said their data shows promise for the separation of hemicellulose and lignin and for the preservation of cellulose. They were able to remove up to 58 percent of lignin and 91 percent of hemicellulose and preserved 90 to 99 percent of cellulose.

Feng said that this is the first time that this solvent has been successfully used as a pretreatment in biofuel production.

"We look forward to its testing and adoption by biofuel manufacturers that are working with Miscanthus and other biomass crops," he said.

"Switchable butadiene sulfone pretreatment of Miscanthus in the presence of water," co-authored by J. Atilio de Frias and Hao Feng, was published in Green Chemistry (2013, 15, 1067-1078).

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>