Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop 'barcode' blood test for aggressive prostate cancer

09.10.2012
Scientists have designed a blood test that reads genetic changes like a barcode – and can pick out aggressive prostate cancers by their particular pattern of gene activity.

A team at The Institute of Cancer Research, London, and The Royal Marsden NHS Foundation Trust found reading the pattern of genes switched on and off in blood cells could accurately detect which advanced prostate cancers had the worst survival.

And the researchers believe the blood test could eventually be used alongside the existing PSA test at diagnosis to select patients who need immediate treatment.

The test, described in The Lancet Oncology today (Tuesday 9 October), is unique because it assesses changes in the pattern of gene activity in blood cells triggered by a tumour elsewhere in the body.

Study senior author Professor Johann de Bono, leader of the prostate cancer targeted therapy team at The Institute of Cancer Research, London, and honorary consultant at The Royal Marsden NHS Foundation Trust, said: "Prostate cancer is a very diverse disease – some people live with it for years without symptoms but for others it can be aggressive and life-threatening – so it's vital we develop reliable tests to tell the different types apart.

"We've shown it is possible to learn more about prostate cancers by the signs they leave in the blood, allowing us to develop a test that is potentially more accurate than those available now and easier for patients than taking a biopsy. Our test reads the pattern of genetic activity like a barcode, picking up signs that a patient is likely to have a more aggressive cancer. Doctors should then be able to adjust the treatment they give accordingly."

Researchers scanned all the genes present in blood samples from 100 patients with prostate cancer at the ICR's and The Royal Marsden's joint Drug Development Unit in London and The Beatson West of Scotland Cancer Centre in Glasgow. They included 69 patients with advanced cancer and 31 control patients thought to have low-risk, early-stage cancer, who were being managed by active surveillance.

Using statistical modelling, they divided the patients into four groups reflecting their pattern of gene activity – the barcode. When they reviewed all the patients' progress after almost two-and-a-half years, they found patients in one group had survived for significantly less time than patients in the others. Further modelling identified nine key active genes that were shared by all patients in the group.

They confirmed the results in another 70 US patients with advanced cancer, showing that just these nine genes could be used to accurately identify those who ultimately survived for a shorter time - 9.2 months compared with 21.6 months for patients without the gene pattern. The genes included a number involved in the immune system – suggesting the immune system was suppressed in patients whose cancers were spreading around the body.

Professor Alan Ashworth, chief executive of The Institute of Cancer Research, said: "Whether particular genes are active or not is an important clue in identifying patients with a poor prognosis. This latest study shows that it is possible to read these patterns of gene activity like a barcode, allowing scientists to spot cancers that are likely to be more aggressive."

Professor Martin Gore, medical director at The Royal Marsden, said: "Personalised medicine is the future of cancer treatment. This blood test, which reads genetic changes in prostate cancer providing a prediction of how aggressive the cancer might be, is an important development, allowing us to better tailor treatment to suit each individual."

The study received funding from AstraZeneca, Prostate Cancer UK (formerly the Prostate Cancer Charity) and the Prostate Cancer Foundation, while the Drug Development Unit also receives funding from Cancer Research UK and the Experimental Cancer Medicine Centre network.

Media Contact: ICR Science Communications Manager Jane Bunce on 0207
153 5106 or 07 721 747 900
Notes to editors:
"Prognostic value of blood mRNA expression signatures in castration resistant prostate cancer: a prospective two-stage study" will publish in The Lancet Oncology on 9 October 2012.

The scientists initially plan to assess the test as part of a large-scale international trial of a new prostate cancer drug in patients with advanced cancer. They also hope to assess the test in patients with earlier-stage disease, using either the existing nine-gene pattern or using the same technique to find another set of genes.

The Institute of Cancer Research, London, is one of the world's most influential cancer research institutes.

Scientists and clinicians at The Institute of Cancer Research (ICR) are working every day to make a real impact on cancer patients' lives. Through its unique partnership with The Royal Marsden and 'bench-to-bedside' approach, the ICR is able to create and deliver results in a way that other institutions cannot. Together the two organisations are rated in the top four cancer centres globally.

The ICR has an outstanding record of achievement dating back more than 100 years. It provided the first convincing evidence that DNA damage is the basic cause of cancer, laying the foundation for the now universally accepted idea that cancer is a genetic disease. Today it leads the world at isolating cancer-related genes and discovering new targeted drugs for personalised cancer treatment.

As a college of the University of London, the ICR provides postgraduate higher education of international distinction. It has charitable status and relies on support from partner organisations, charities and the general public.

The ICR's mission is to make the discoveries that defeat cancer. For more information visit www.icr.ac.uk

The Royal Marsden NHS Foundation Trust

The Royal Marsden opened its doors in 1851 as the world's first hospital dedicated to cancer diagnosis, treatment, research and education. Today, together with its academic partner, The Institute of Cancer Research (ICR), it is the largest and most comprehensive cancer centre in Europe treating over 44,000 patients every year. It is a centre of excellence with an international reputation for groundbreaking research and pioneering the very latest in cancer treatments and technologies. The Royal Marsden also provides community services in the London boroughs of Sutton and Merton and in June 2010, along with the ICR, the Trust launched a new academic partnership with Mount Vernon Cancer Centre in Middlesex.

Since 2004, the hospital's charity, The Royal Marsden Cancer Charity, has helped raise over £50 million to build theatres, diagnostic centres, and drug development units.

Prince William became President of The Royal Marsden in 2007, following a long royal connection with the hospital. For more information, visit www.royalmarsden.nhs.uk

Jane Bunce | EurekAlert!
Further information:
http://www.icr.ac.uk

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>