Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists demonstrate importance of niche differences in biodiversity

17.08.2009
Scientists at UC Santa Barbara have found strong evidence that niche differences are critical to biodiversity. Their findings are published online in this week's issue of the journal Nature.

"Ecologists have long assumed that species differences in how they use the environment are key to explaining the large number of species we see all around us, but the importance of such niches have never been field tested," said first author Jonathan M. Levine, associate professor in UCSB's Department of Ecology, Evolution, and Marine Biology.

Levine and his co-author Janneke HilleRisLambers, a former postdoctoral fellow at UCSB, who is now an assistant professor at the University of Washington, did field testing of small plants. These plants were found in northern Santa Barbara County on rocky outcrops, where diversity is very high. They used a combination of mathematical techniques, as well as experimental approaches, to remove niche differences from these experimental communities.

"Our work is important because it resolves a century-old biodiversity puzzle," said Levine. "Why doesn't the single best competitor exclude all others in the community?"

Ecological theory has posed two possible answers to the coexistence conundrum. "The classic argument is that niche differences allow species to divide up the environment, much like different products cater to consumers of different tastes or incomes," he said. "The alternative is that competitors are so evenly matched that no single species can win –– as occurs when different airlines offer the same route for the same price."

Conflict between these hypotheses has formed the single greatest controversy in ecology over the last decade. The new study provides the first strong evidence that species' differences are responsible for their coexistence.

Although the study's primary importance is in advancing pure ecological science, understanding how biodiversity works is critical. It is in those communities in which niche differences maintain diversity that species loss has the greatest impact on plant production, and other ecosystem services to mankind –– from economic to aesthetic.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>