Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists decipher structure of nature's 'light switch'

01.06.2010
New findings will help scientists understand how plants respond to light

When the first warm rays of springtime sunshine trigger a burst of new plant growth, it's almost as if someone flicked a switch to turn on the greenery and unleash a floral profusion of color.

Opening a window into this process, scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and collaborators at the University of Wisconsin, Madison, have deciphered the structure of a molecular "switch" much like the one plants use to sense light. Their findings, described online in the Proceedings of the National Academy of Sciences the week of May 31, 2010, help explain how the switch works and could be used to design new ways to modify plant growth.

Previous studies showed that the light-sensing structure, called a phytochrome, exists in two stable states. Each state is sensitive to a slightly different wavelength, or color, of light — from red to "far red," which is close to the invisible infrared end of the light spectrum. As the phytochrome absorbs photons of one wavelength or the other, it changes shape and sends signals that help plants know when to flower, produce chlorophyll, and grow.

"The phytochrome is almost like nature's light switch," said Brookhaven biophysicist Huilin Li, who is also an associate professor at Stony Brook University and a lead author on the study. "Finding out how this switch is flipped on or off by a signal as subtle as a single photon of light is fascinating."

As with all biological molecules, one key to the phytochrome's function is its structure. But scientists trying to get a molecular-level picture of a phytochrome have a formidable challenge: The phytochrome molecule is too dynamic to capture in a single image using techniques like x-ray crystallography. So, scientists have studied only the rigid and smaller pieces of the molecule, yielding detailed, but fragmented, information.

Now using additional imaging and computational techniques, the Brookhaven researchers and their collaborators have pieced together for the first time a detailed structure of a whole phytochrome.

Li and his collaborators studied a phytochrome from a common bacterium that is quite similar in biochemistry and function to those found in plants, but easier to isolate. Plant biologist Richard Vierstra of the University of Wisconsin provided the purified samples.

At Brookhaven, Li's group used two imaging techniques. First, they applied a layer of heavy metal dye to the purified phytochrome molecules to make them more visible, and viewed them using an electron microscope. This produced many two-dimensional images from a variety of angles to give the researchers a rough outline of the phytochrome map.

The scientists also froze the molecules in solution to produce another set of images that would be free of artifacts from the staining technique. For this set of images, the scientists used a cryo-electron microscope.

Using computers to average the data from each technique and then combine the information, the scientists were able to construct a three-dimensional map of the full phytochrome structure. The scientists then fitted the previously determined detailed structures of phytochrome fragments into their newly derived 3-D map to build an atomic model for the whole phytochrome.

Though the scientists knew the phytochrome was composed of two "sister" units, forming a dimer, the new structure revealed a surprisingly long twisted area of contact between the two individual units, with a good deal of flexibility at the untwisted ends. The structure supports the idea that the absorption of light somehow adjusts the strength or orientation of the contact, and through a series of conformation changes, transmits a signal down the length of the molecular interface. The scientists confirmed the proposed structural changes during photo-conversion by mutagenesis and biochemical assay.

The scientists studied only the form of the phytochrome that is sensitive to red light. Next they plan to see how the structure changes after it absorbs red light to become sensitive to "far red" light. Comparing the two structures will help the scientists test their model of how the molecule changes shape to send signals in response to light.

This research was supported by Brookhaven's Laboratory Directed Research and Development program, the National Institutes of Health, the National Science Foundation, and a grant from the University of Wisconsin College of Agricultural and Life Science.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more: http://www.bnl.gov/newsroom

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>