Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists decipher first termite genome / Investigations into development of social insects


Researchers have now sequenced and analysed the genome of one termite species. The study has been published in the latest issue of the online journal "Nature Communications".

Scientists have long been doing research into how the complicated system of living together in insect colonies functions. Researchers are also looking for answers in animals' DNA. A large international group of researchers – including scientists from Münster University – have now sequenced and analysed the genome of one termite species. This means that they have now been able to compare the termites' DNA with that of ants and colony-building bees.

Soldiers of dampwood termites (Zootermopsis nevadensis)

Photo: Nina Minkley

This is of particular interest to the researchers because although termites have a similar lifestyle – they, too, form colonies and have various castes such as workers and reproductives – they are not closely related to hymenopterans, which include bees and ants. The study has been published in the latest issue of the online journal "Nature Communications".

"The analysis of the termite genome is crucial in improving our understanding of decisive steps in the evolution of insects – the development of social insects," says Dr. Nicolas Terrapon, who carried out the study, as one of its main authors, during the time he spent as a post-doc at the Institute of Evolution and Biodiversity at Münster University. "Termites", he adds, "are, in contrast to bees and ants, quite original insects and belong to the cockroaches. Our investigations will help in acquiring a better understanding of the evolution of insects in general."

... more about:
»DNA »Nature »ants »genes »insects »olfactory »role »species »sperm »termite

The scientists examined whether the evolution of sociality in various groups of insects was based on the same molecular mechanisms. In doing so, they discovered not only differences, but also things they had in common. One conspicuous difference they came across was in groups of genes involved in the maturing of the sperm in male animals. In the case of the species of termites that live in wood – Zootermopsis nevadensis (dampwood termites) – some of these genes occur more actively or in greater numbers than in the species of ants and bees hitherto examined.

The researchers assume that this reflects a special feature of their lifestyle – that while male ants and bees, for example, produce a large number of sperm just once and then die shortly after mating, male termites mate with the queen of their nest several times during their life.

Another difference is that, in comparison with the highly social hymenopterans, the dampwood termites have only a few olfactory receptors. In general, smell plays an extremely important role for social insects, not only in communication and in recognizing nest comrades, but also in looking for food. Dampwood termites, however, have a simpler lifestyle than ants, honey bees or more highly developed termites. In looking for food, for example, they do not move away from the nest and display less complex communicative behaviour. The lower number of olfactory receptors reflects this lifestyle.

The researchers did, however, also discover things they have in common. Dampwood termites, for example, have – just like ants – an especially large number of genes which play a role in immune responses. Social insects are more dependent on effective infection controls, as pathogens will otherwise spread easily in the densely populated colonies. Moreover, the scientists have found proteins which might play an important role in the development of caste-specific features – just like a similar system in honey bees.

Prof. Erich Bornberg-Bauer (Münster University), Prof. Jürgen Liebig (Arizona State University, USA), Prof. Judith Korb (Freiburg University) and Guojie Zhang (China National Genebank, BGI-Shenzen, China) were involved in the study as project leaders. Dr. Nicolas Terrapon is now engaged on research at Aix-Marseille University in France.

Original publication:

Terrapon N. et al. (2014): "Molecular traces of alternative social organization in a termite genome". Nature Communications 5; Article number: 3636, doi:10.1038/ncomms4636

Weitere Informationen: Original publication

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft

Further reports about: DNA Nature ants genes insects olfactory role species sperm termite

More articles from Life Sciences:

nachricht Understanding a missing link in how antidepressants work
25.11.2015 | Max Planck Institute of Psychiatry, München

nachricht Plant Defense as a Biotech Tool
25.11.2015 | Austrian Centre of Industrial Biotechnology (ACIB)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Harnessing a peptide holds promise for increasing crop yields without more fertilizer

25.11.2015 | Agricultural and Forestry Science

Earth's magnetic field is not about to flip

25.11.2015 | Earth Sciences

Tracking down the 'missing' carbon from the Martian atmosphere

25.11.2015 | Physics and Astronomy

More VideoLinks >>>