Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists decipher first termite genome / Investigations into development of social insects

21.05.2014

Researchers have now sequenced and analysed the genome of one termite species. The study has been published in the latest issue of the online journal "Nature Communications".

Scientists have long been doing research into how the complicated system of living together in insect colonies functions. Researchers are also looking for answers in animals' DNA. A large international group of researchers – including scientists from Münster University – have now sequenced and analysed the genome of one termite species. This means that they have now been able to compare the termites' DNA with that of ants and colony-building bees.


Soldiers of dampwood termites (Zootermopsis nevadensis)

Photo: Nina Minkley

This is of particular interest to the researchers because although termites have a similar lifestyle – they, too, form colonies and have various castes such as workers and reproductives – they are not closely related to hymenopterans, which include bees and ants. The study has been published in the latest issue of the online journal "Nature Communications".

"The analysis of the termite genome is crucial in improving our understanding of decisive steps in the evolution of insects – the development of social insects," says Dr. Nicolas Terrapon, who carried out the study, as one of its main authors, during the time he spent as a post-doc at the Institute of Evolution and Biodiversity at Münster University. "Termites", he adds, "are, in contrast to bees and ants, quite original insects and belong to the cockroaches. Our investigations will help in acquiring a better understanding of the evolution of insects in general."

... more about:
»DNA »Nature »ants »genes »insects »olfactory »role »species »sperm »termite

The scientists examined whether the evolution of sociality in various groups of insects was based on the same molecular mechanisms. In doing so, they discovered not only differences, but also things they had in common. One conspicuous difference they came across was in groups of genes involved in the maturing of the sperm in male animals. In the case of the species of termites that live in wood – Zootermopsis nevadensis (dampwood termites) – some of these genes occur more actively or in greater numbers than in the species of ants and bees hitherto examined.

The researchers assume that this reflects a special feature of their lifestyle – that while male ants and bees, for example, produce a large number of sperm just once and then die shortly after mating, male termites mate with the queen of their nest several times during their life.

Another difference is that, in comparison with the highly social hymenopterans, the dampwood termites have only a few olfactory receptors. In general, smell plays an extremely important role for social insects, not only in communication and in recognizing nest comrades, but also in looking for food. Dampwood termites, however, have a simpler lifestyle than ants, honey bees or more highly developed termites. In looking for food, for example, they do not move away from the nest and display less complex communicative behaviour. The lower number of olfactory receptors reflects this lifestyle.

The researchers did, however, also discover things they have in common. Dampwood termites, for example, have – just like ants – an especially large number of genes which play a role in immune responses. Social insects are more dependent on effective infection controls, as pathogens will otherwise spread easily in the densely populated colonies. Moreover, the scientists have found proteins which might play an important role in the development of caste-specific features – just like a similar system in honey bees.

Prof. Erich Bornberg-Bauer (Münster University), Prof. Jürgen Liebig (Arizona State University, USA), Prof. Judith Korb (Freiburg University) and Guojie Zhang (China National Genebank, BGI-Shenzen, China) were involved in the study as project leaders. Dr. Nicolas Terrapon is now engaged on research at Aix-Marseille University in France.

Original publication:

Terrapon N. et al. (2014): "Molecular traces of alternative social organization in a termite genome". Nature Communications 5; Article number: 3636, doi:10.1038/ncomms4636

Weitere Informationen:

http://www.nature.com/ncomms/2014/140520/ncomms4636/full/ncomms4636.html Original publication

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft

Further reports about: DNA Nature ants genes insects olfactory role species sperm termite

More articles from Life Sciences:

nachricht More than just a mechanical barrier – epithelial cells actively combat the flu virus
04.05.2016 | Helmholtz-Zentrum für Infektionsforschung

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>