Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists decipher first termite genome / Investigations into development of social insects


Researchers have now sequenced and analysed the genome of one termite species. The study has been published in the latest issue of the online journal "Nature Communications".

Scientists have long been doing research into how the complicated system of living together in insect colonies functions. Researchers are also looking for answers in animals' DNA. A large international group of researchers – including scientists from Münster University – have now sequenced and analysed the genome of one termite species. This means that they have now been able to compare the termites' DNA with that of ants and colony-building bees.

Soldiers of dampwood termites (Zootermopsis nevadensis)

Photo: Nina Minkley

This is of particular interest to the researchers because although termites have a similar lifestyle – they, too, form colonies and have various castes such as workers and reproductives – they are not closely related to hymenopterans, which include bees and ants. The study has been published in the latest issue of the online journal "Nature Communications".

"The analysis of the termite genome is crucial in improving our understanding of decisive steps in the evolution of insects – the development of social insects," says Dr. Nicolas Terrapon, who carried out the study, as one of its main authors, during the time he spent as a post-doc at the Institute of Evolution and Biodiversity at Münster University. "Termites", he adds, "are, in contrast to bees and ants, quite original insects and belong to the cockroaches. Our investigations will help in acquiring a better understanding of the evolution of insects in general."

... more about:
»DNA »Nature »ants »genes »insects »olfactory »role »species »sperm »termite

The scientists examined whether the evolution of sociality in various groups of insects was based on the same molecular mechanisms. In doing so, they discovered not only differences, but also things they had in common. One conspicuous difference they came across was in groups of genes involved in the maturing of the sperm in male animals. In the case of the species of termites that live in wood – Zootermopsis nevadensis (dampwood termites) – some of these genes occur more actively or in greater numbers than in the species of ants and bees hitherto examined.

The researchers assume that this reflects a special feature of their lifestyle – that while male ants and bees, for example, produce a large number of sperm just once and then die shortly after mating, male termites mate with the queen of their nest several times during their life.

Another difference is that, in comparison with the highly social hymenopterans, the dampwood termites have only a few olfactory receptors. In general, smell plays an extremely important role for social insects, not only in communication and in recognizing nest comrades, but also in looking for food. Dampwood termites, however, have a simpler lifestyle than ants, honey bees or more highly developed termites. In looking for food, for example, they do not move away from the nest and display less complex communicative behaviour. The lower number of olfactory receptors reflects this lifestyle.

The researchers did, however, also discover things they have in common. Dampwood termites, for example, have – just like ants – an especially large number of genes which play a role in immune responses. Social insects are more dependent on effective infection controls, as pathogens will otherwise spread easily in the densely populated colonies. Moreover, the scientists have found proteins which might play an important role in the development of caste-specific features – just like a similar system in honey bees.

Prof. Erich Bornberg-Bauer (Münster University), Prof. Jürgen Liebig (Arizona State University, USA), Prof. Judith Korb (Freiburg University) and Guojie Zhang (China National Genebank, BGI-Shenzen, China) were involved in the study as project leaders. Dr. Nicolas Terrapon is now engaged on research at Aix-Marseille University in France.

Original publication:

Terrapon N. et al. (2014): "Molecular traces of alternative social organization in a termite genome". Nature Communications 5; Article number: 3636, doi:10.1038/ncomms4636

Weitere Informationen: Original publication

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft

Further reports about: DNA Nature ants genes insects olfactory role species sperm termite

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>