Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists decipher first termite genome / Investigations into development of social insects

21.05.2014

Researchers have now sequenced and analysed the genome of one termite species. The study has been published in the latest issue of the online journal "Nature Communications".

Scientists have long been doing research into how the complicated system of living together in insect colonies functions. Researchers are also looking for answers in animals' DNA. A large international group of researchers – including scientists from Münster University – have now sequenced and analysed the genome of one termite species. This means that they have now been able to compare the termites' DNA with that of ants and colony-building bees.


Soldiers of dampwood termites (Zootermopsis nevadensis)

Photo: Nina Minkley

This is of particular interest to the researchers because although termites have a similar lifestyle – they, too, form colonies and have various castes such as workers and reproductives – they are not closely related to hymenopterans, which include bees and ants. The study has been published in the latest issue of the online journal "Nature Communications".

"The analysis of the termite genome is crucial in improving our understanding of decisive steps in the evolution of insects – the development of social insects," says Dr. Nicolas Terrapon, who carried out the study, as one of its main authors, during the time he spent as a post-doc at the Institute of Evolution and Biodiversity at Münster University. "Termites", he adds, "are, in contrast to bees and ants, quite original insects and belong to the cockroaches. Our investigations will help in acquiring a better understanding of the evolution of insects in general."

... more about:
»DNA »Nature »ants »genes »insects »olfactory »role »species »sperm »termite

The scientists examined whether the evolution of sociality in various groups of insects was based on the same molecular mechanisms. In doing so, they discovered not only differences, but also things they had in common. One conspicuous difference they came across was in groups of genes involved in the maturing of the sperm in male animals. In the case of the species of termites that live in wood – Zootermopsis nevadensis (dampwood termites) – some of these genes occur more actively or in greater numbers than in the species of ants and bees hitherto examined.

The researchers assume that this reflects a special feature of their lifestyle – that while male ants and bees, for example, produce a large number of sperm just once and then die shortly after mating, male termites mate with the queen of their nest several times during their life.

Another difference is that, in comparison with the highly social hymenopterans, the dampwood termites have only a few olfactory receptors. In general, smell plays an extremely important role for social insects, not only in communication and in recognizing nest comrades, but also in looking for food. Dampwood termites, however, have a simpler lifestyle than ants, honey bees or more highly developed termites. In looking for food, for example, they do not move away from the nest and display less complex communicative behaviour. The lower number of olfactory receptors reflects this lifestyle.

The researchers did, however, also discover things they have in common. Dampwood termites, for example, have – just like ants – an especially large number of genes which play a role in immune responses. Social insects are more dependent on effective infection controls, as pathogens will otherwise spread easily in the densely populated colonies. Moreover, the scientists have found proteins which might play an important role in the development of caste-specific features – just like a similar system in honey bees.

Prof. Erich Bornberg-Bauer (Münster University), Prof. Jürgen Liebig (Arizona State University, USA), Prof. Judith Korb (Freiburg University) and Guojie Zhang (China National Genebank, BGI-Shenzen, China) were involved in the study as project leaders. Dr. Nicolas Terrapon is now engaged on research at Aix-Marseille University in France.

Original publication:

Terrapon N. et al. (2014): "Molecular traces of alternative social organization in a termite genome". Nature Communications 5; Article number: 3636, doi:10.1038/ncomms4636

Weitere Informationen:

http://www.nature.com/ncomms/2014/140520/ncomms4636/full/ncomms4636.html Original publication

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft

Further reports about: DNA Nature ants genes insects olfactory role species sperm termite

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>