Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at CSHL discover mobile small RNAs that set up leaf patterning in plants

03.03.2009
Small RNAs act like morphogens in helping to define the boundary between the top and bottom halves of leaves

A key item in the developmental agenda of a plant leaf is the establishment of an axis that makes a leaf's top half distinct from its bottom half. This asymmetry is crucial for the leaf's function: it ensures that the leaf develops a flattened blade that is optimized for photosynthesis, with a top surface specialized for light harvesting and a bottom surface containing tiny pores that serve as locales for gas exchange.

For years, plant biologists have known that this top/bottom axis – analogous to the front/back or "dorso-ventral" axis in animals – is established by a signal derived from the meristem, the stem cell-rich growing tip of the plant from which new leaves arise. Other signals that traffic between the upper and lower sides of the leaf are thought to stably maintain this polar axis. Just as a GPS signal tells drivers where they are, these signals give cells positional information about where they are located within the leaf, causing them to acquire their correct identities by switching specific genes "on" or "off."

Associate Professor Marja Timmermans, Ph.D., and her team of scientists at Cold Spring Harbor Laboratory (CSHL) are the first group to uncover the identity of one such positional signal. In a study that appears in the March 1st issue of Genes and Development, they describe a family of mobile small RNAs that patterns the top/bottom axis in leaves. These small RNAs, they discovered, are generated on the upper surface of young leaves but traffic from this source to form a concentration gradient across each leaf. This graded distribution pattern creates discrete regions of gene activity so that cells in each half of a leaf develop a distinct "top" or "bottom" identity.

"We've known that small RNAs produced upon viral infection can move from cell to cell," explains Timmermans. "But this is the first time anyone has shown that small RNAs that are native to the organism are similarly mobile and set up developmental patterns when they move through neighboring cells."

Ta-siRNAs behave like morphogens

These native, or endogenous, small RNAs are called trans-acting small interfering RNAs (ta-siRNAs). Like microRNAs and endogenous siRNAs present in other organisms, they regulate gene activity via a mechanism called RNA interference. Because of their newly discovered properties in leaf patterning, Timmermans likens the ta-siRNAs to "morphogens" or form-generating substances. Morphogens have been well studied in animals, although to date, scientists have only discovered protein and hormone morphogens. These molecules operate as positional signals whose effect on target cells is concentration-dependent. Secreted at a defined location, their movement establishes a concentration gradient that patterns a developing tissue such that cells closest to the morphogen's point of origin become distinct from cells that are farther away.

The CSHL team has now found that in plant leaves, ta-siRNAs similarly generate a concentration gradient that divides the developing leaf into a top and bottom half with different specialized cell types.

A ta-siRNA 'gradient' determines the ups and downs of developing leaves

The function of these ta-siRNAs is to specifically block the activity of a gene called ARF3. This gene defines the identities of cells found in the bottom half of leaves. For the correct leaf pattern to develop, it is therefore crucial that ARF3 is switched "on" in the right cells – those at the leaf's lower side – and turned "off" everywhere else.

"Without ta-siRNAs, leaves look like needles, because they lack an upper side," Timmermans says. "But we didn't understand how they set up patterning." This raised the question, in other words, of why ta-siRNAs only switch off ARF3 on the upper side of leaves. The CSHL team's finding that these RNA molecules seem to act as morphogens now solves the puzzle.

"Establishment of a gradient of mobile small RNAs can create profound differences between neighboring cells by altering their gene activity patterns," Timmermans says. "This is a neat way of dividing a cluster of cells into distinct sections with sharply drawn boundaries."

The top-to-bottom, abundant-to-rare distribution, or "concentration gradient," of ta-siRNAs ensures that the activity of ARF3 is strongly inhibited in the leaf's top half, but mildly or hardly affected at the bottom, thus creating a sharp boundary between leaf sections with different fates.

Ta-siRNA biogenesis is spatially controlled

In addition to mobility, the team attributes the unique distribution pattern of these small RNAs to the way they are produced within the leaf – a biochemical process involving several complicated steps.

The small ta-siRNAs are generated from larger RNA strands called precursors that are snipped at specific sites. Two cellular ingredients ensure that the cuts occur in the right place: a microRNA molecule called miR390 that specifies the location of the first cut, and an enzyme called ARGONAUTE7 (AGO7) that ferries miR390 to this location and creates the cut.

The CSHL team found that although miR390 is present in all cells of the leaf, the precursors and ARGONAUTE7 are strictly restricted to only the cells in the two uppermost layers. The ta-siRNAs are therefore generated exclusively in these upper cell layers, from where they move to the lower side of the leaf, accumulating as a gradient.

Thus, besides identifying the first example of a morphogen-like small RNA signal, Timmermans and her team have also shown that the location of the various biochemical ingredients required for small RNA activity can impact pattern formation. Together, their discoveries explain how mobile small RNAs can generate patterns during development.

Hema Bashyam | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>