Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Create Road Map to Metabolic Reprogramming for Aging

03.12.2012
In efforts to understand what influences life span, cancer and aging, scientists are building roadmaps to navigate and learn about cells at the molecular level.

To survey previously uncharted territory, a team of researchers at UW-Madison created an “atlas” that maps more than 1,500 unique landmarks within mitochondria that could provide clues to the metabolic connections between caloric restriction and aging.

The map, as well as the techniques used to create it, could lead to a better understanding of how cell metabolism is re-wired in some cancers, age-related diseases and metabolic conditions such as diabetes.

“It’s really a dynamic atlas for regulatory points in mitochondrial function -- there are many interesting avenues that other scientists can follow up on,” says John Denu, professor of biomolecular chemistry and leader of the Epigenetics theme at the Wisconsin Institute for Discovery (WID). “It could take years for researchers to understand what it all means, but at least now we have a list of the most important players.”

In previous experiments, it’s been shown that consuming less food increases the life span and health span in a range of organisms, from yeast and flies to mice and non-human primates. But pinpointing where and how caloric restriction affects cells at a molecular level remains the challenge.

So far, mitochondrial proteins, the molecules that command specific actions in the cell’s powerhouse organelle, are at center stage of metabolic reprogramming.

Denu and colleagues conducted earlier research on the mitochondrial protein Sirt3, where they suggested a link between Sirt3 and the benefits of caloric restriction in situations such as the prevention of age-related hearing loss.

The new research, published in the Nov. 29 issue of the journal Molecular Cell, more broadly identifies pathways in mitochondria that could be behind the re-wiring of metabolism. Their work uncovered regulatory processes that maintain mitochondrial health, control cells’ ability to metabolize fat and amino acids, as well as stimulate anti-oxidant responses. This re-wiring involves the addition or removal of two-carbon (acetylation) chemical groups within regulatory molecules called proteins.

In the study, scientists looked at liver tissue from groups of mice -- both with and without the ability to produce Sirt3. Some received a calorically restricted diet and some did not. After one year, they compared protein and acetylation changes among the groups of mice. They found Sirt3 was essential for many of the metabolic adaptations that occur during calorie restriction. These results suggest that therapies, including diet or drugs that enhance Sirt3 function, might provide novel interventions to fend off age-related illnesses.

Joshua Coon, professor of chemistry and biomolecular chemistry at UW-Madison and co-author of the paper, crafted a new technique to find these molecular sites. While the genome plays a key role in an organism’s health, he points out that studying proteins -- the molecular machines that carry out an organism’s original genetic instructions -- can be more accurate in revealing how a gene functions.

“We’ve taken dozens of primary tissues and profiled their protein content with depth to learn how they vary,” Coon says. “With that information, we have direct knowledge at the molecular level of how an organism is dealing with adaption to diet, or potentially, a given disease state.”

He says using mass spectrometry to look for acetylated proteins from tissue samples is a more fruitful approach to identify relevant physiological changes. The study, he says, is one of the first of many that will create descriptive maps for other disease models.

To expand access to these enabling technologies across campus, Coon plans to launch the Wisconsin Center for Collaborative Proteomics in 2013. The center has received significant support from the UW and is pending further support via federal funding.

-- Marianne English, 608-316-4687, menglish@discovery.wisc.edu

John Denu, 608-316-4341, jmdenu@wisc.edu; Joshua Coon, 608-263-1718, jcoon@chem.wisc.edu

Marianne English | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>