Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists create humanized mouse model for hepatitis C

09.06.2011
Scientists at Rockefeller University and The Scripps Research Institute have developed the first genetically humanized mouse model for hepatitis C, an achievement that will enable researchers to test molecules that block entry of the hepatitis C virus into cells as well as potential vaccine candidates. The finding is reported in the June 9 issue of the journal Nature.

While the hepatitis C virus can infect chimpanzees and humans, scientists have been unable to study the progression of the virus' life cycle or possible treatments in small animal models. The new mouse model is the first to be developed with a fully functioning immune system.

"Our genetically humanized mouse model for hepatitis C will allow us to gain deeper insights in the biology of this important pathogen," says senior author Alexander Ploss, a research assistant professor at Rockefeller. "This robust small animal model also has the potential to serve a critical role in testing and prioritizing drug and vaccine candidates. Results from these tests can potentially guide more expensive pre-clinical and clinical studies in higher order organisms, including humans."

The development of this mouse model is the culmination of several years of research by scientists in the laboratory of Charles M. Rice and other research groups. In 2006, Rice and his colleagues were the first to successfully create a strain of hepatitis C in the laboratory, which can efficiently be grown in the laboratory, and is also infectious in animals. More recently, Rice, Ploss and their colleagues discovered that hepatitis C virus infection requires previously identified CD81 and scavenger receptor type B class I, as well as two tight junction molecules, claudin 1 and occludin. The Rockefeller researchers showed that human CD81 and occludin were required for hepatitis C virus to enter mouse cells.

In the new study, the Rockefeller researchers and colleagues at The Scripps Research Institute tested whether introducing some of these previously identified human genes into mice would allow them to infect the animals with the hepatitis C virus. The researchers compared two groups of mice: one group expressed two genes, CD81 and occludin, while mice in the second group were normal. They found that expression of human CD81 and human occludin in the mouse liver rendered the animals susceptible to HCV infection. Ploss and his colleagues also developed a novel reporter system, which allowed them to sensitively detect HCV infection in living animals.

"We have established a precedent for applying mouse genetics to dissect viral entry and validate the role of scavenger receptor type B class 1, a molecule that is being considered as a novel antiviral drug target, for HCV uptake in a living animal," says Charles M. Rice, Maurice R. and Corinne P. Greenberg Professor and head of the Laboratory of Virology and Infectious Disease at Rockefeller. Rice also is executive and scientific director of the Center for the Study of Hepatitis C, an interdisciplinary center established jointly by The Rockefeller University, NewYork-Presbyterian Hospital and Weill Cornell Medical College.

Worldwide at least 130 million people are chronically infected with HCV, which poses a risk of severe liver injury and liver cancer. Current treatments are only partially effective and have considerable side effects, and a vaccine against hepatitis C does not exist.

"The global HCV epidemic mandates the development of more effective therapeutics including a vaccine," says Ploss. "This mouse model is a first step toward a platform that effectively serves this purpose."

This research was supported in part by the National Institutes of Health.

Joseph Bonner | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: CD81 HCV HCV infection Rockefeller hepatitis C virus mouse model scavenger receptor

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>