Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists create artificial human skin with biomechanical properties using tissue engineering

Scientists from the University of Granada, Spain, have generated artificial human skin by tissular engineering basing on agarose-fibrin biomaterial.

The artificial skin was grafted onto mice, and optimal development, maturation and functionality results were obtained.

This pioneering finding will allow the clinical use of human skin and its use in many laboratory tests on biological tissues –which, additionally, would avoid the use of laboratory animals. Further, this finding could be useful in developing new treatment approaches for dermatological pathologies.

This research was conducted by José María Jiménez Rodríguez, from the Tissular Engineering Research group of the Department of Histology of the University of Granada, and coordinated by professors Miguel Alaminos Mingorance, Antonio Campos Muñoz and José Miguel Labrador Molina.

Researchers from the University of Granada firstly selected the cells that would be employed in generating artificial skin. Then, they analysed the evolution of the in-vitro culture and, finally, they performed a quality control of the tissues grafted onto nude mice. To this purpose, several inmunofluorescence microscopy techniques had to be developed. These techniques allowed researchers to evaluate such factors as cell proliferation, the presence of differentiating morphological markers, the expression of cytokeratin, involucrine and filaggrin, angiogenesis and artificial skin development into the recipient organism.

Human Skin Samples

To make this assay, researchers obtained human skin from small biopsies belonging to patients following surgery at the Plastic Surgery Service of the University Hospital Virgen de las Nieves in Granada. All patients gave their consent to take part in this research study.

To create artificial human skin, human fibrin from plasma of healthy donors was used. Researchers then added tranexamic acid –to prevent fibrinolysis–, and calcium chloride to precipitate fibrin coagulation, and 0.1% aragose. These artificial-skin substitutes were grafted on the back of the nude mice, with the purpose of observing its evolution in vivo. The equivalent skin substitutes were analysed by transmission and scanning light and electron microscopy and inmunofluorescence.

The skin created in the laboratory showed adequate biocompatibility rates with the recipient and no rejection, dehiscence or infection was registered. Additionally, the skin of all animals used in the study started to show granulation after six days from implantation. Within the following twenty days, cicatrization was complete.

The experiment conducted by the University of Granada is the first to create artificial human skin with a dermis made of fibrin-agarose biomaterial. To this date, artificial skin substitutes were elaborated with other biomaterials as collagen, fibrin, polyglycolic acid, chitosan, etc.

These biomaterials "added resistance, firmness and elasticity to the skin" –according to Prof. Jiménez Rodríguez. "Definitively, we have created a more stable skin with similar functionality to normal human skin."

Contact: José María Jiménez Rodríguez. Department of Histology of the University of Granada. Mobile phone: +34 665 242 152. E-mail:

Jose Maria Jimenez Rodriguez | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>