Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Convert Skin Cells to Beating Heart Cells

01.02.2011
Scripps Research Institute scientists have converted adult skin cells directly into beating heart cells efficiently without having to first go through the laborious process of generating embryonic-like stem cells. The powerful general technology platform could lead to new treatments for a range of diseases and injuries involving cell loss or damage, such as heart disease, Parkinson’s, and Alzheimer’s disease.

The work was published January 30, 2011, in an advance, online issue of Nature Cell Biology.

"This work represents a new paradigm in stem cell reprogramming," said Scripps Research Associate Professor Sheng Ding, Ph.D., who led the study. "We hope it helps overcome major safety and other technical hurdles currently associated with some types of stem cell therapies."

Making Stem Cells

As the human body develops, embryonic-like stem cells multiply and transform themselves into more mature cell types through a process known as differentiation, producing all of the body’s different cell types and tissues. Past the embryonic stage, however, the human body has limited capacity to generate new cells to replace ones that have been lost or damaged.

Thus, scientists have been trying to develop ways to “reprogram” adult human cells back to a more embryonic-like, or pluripotent, state, from which they are able to divide and then change into any of the body’s cell types. Using these techniques, scientists aim to someday be able to take a patient’s own cells, say skin cells, change them into heart or brain cells, and then insert them back into the patient to fix damaged tissues. In 2006, Japanese scientists reported that they could reprogram mouse skin cells to become pluripotent simply by inserting a set of four genes into the cells.

Although the technology to generate these cells, dubbed induced pluripotent stem (iPS) cells, represents a major advance, there are some hurdles to overcome before it can be adapted to therapies.

“It takes a long time to generate iPS cells and then differentiate them into tissue-specific functional cell types," said Ding, "and it’s a tedious process. Also, what you generate is not ideal.”

Specifically, it takes some two to four weeks for scientists to create iPS cells from skin cells and the process is far from efficient, with only one cell out of thousands making the complete transformation. Furthermore, once scientists obtain iPS cells, they then have to go through the tricky procedure of inducing the iPS cells to differentiate into desired types of cells, which takes an additional two to four weeks.

In addition, the process of generating mature cells from iPS cells is not foolproof. When, for example, scientists induce iPS cells to become heart cells, the resulting cells are a mix of heart cells and some lingering iPS cells. Scientists are concerned that giving these new heart cells (along with the remaining pluripotent cells) to patients might be dangerous. When pluripotent cells are injected in mice, they cause cancer-like growths.

Because of these concerns, Ding and colleagues decided to try to tweak the process by completely bypassing the iPS stage and going directly from one type of mature cell (a skin cell) to another (a heart cell).

Bypassing the Stem Cell Stage

The team introduced the same four genes initially used to make iPS cells into adult skin fibroblast cells, but instead of letting the genes be continuously active in cells for several weeks, they switched off their activities just after a few days, long before the cells had turned into iPS cells. Once the four genes were switched off, the scientists gave a signal to the cells to make them turn into heart cells.

“In 11 days, we went from skin cells to beating heart cells in a dish,” said Ding. “It was phenomenal to see.”

Ding points out the protocol is fundamentally different from what has been done by other scientists in the past and notes that giving the cells a different kind of signal could turn them into brain cells or pancreatic cells.

“It is like launching a rocket," he said. "Until now, people thought you needed to first land the rocket on the moon and then from there you could go to other planets. But here we show that just after the launch you can redirect the rocket to another planet without having to first go to the moon. This is a totally new paradigm.”

In addition to better understanding the basic biology of stem cells, the next step will be to modify this technique further to remove the need for inserting the four genes, which have been linked to the development of cancer. As a result, many scientists, including Ding, have been working on new techniques to develop iPS cells without use of these genes. That has proven difficult. But with the new protocol, which bypasses the iPS cell stage, the genes are needed for a much shorter time.

“Action for such a short period of time is a lot easier to replace,” Ding noted.

In addition to Ding, authors of the paper, "Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy," are Jem A. Efe, Simon Hilcove, Janghwan Kim, and Hongyan Zhou of Scripps Research, and Kunfu Ouyang, Gang Wang, and Ju Chen of the University of California, San Diego.

The research was funded by The Scripps Research Institute, California Institute for Regenerative Medicine, Fate Therapeutics, and the Esther B. O’Keeffe Foundation.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, Scripps Research currently employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Headquartered in La Jolla, California, the institute also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

Mika Ono | Newswise Science News
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>