Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Convert Skin Cells to Beating Heart Cells

01.02.2011
Scripps Research Institute scientists have converted adult skin cells directly into beating heart cells efficiently without having to first go through the laborious process of generating embryonic-like stem cells. The powerful general technology platform could lead to new treatments for a range of diseases and injuries involving cell loss or damage, such as heart disease, Parkinson’s, and Alzheimer’s disease.

The work was published January 30, 2011, in an advance, online issue of Nature Cell Biology.

"This work represents a new paradigm in stem cell reprogramming," said Scripps Research Associate Professor Sheng Ding, Ph.D., who led the study. "We hope it helps overcome major safety and other technical hurdles currently associated with some types of stem cell therapies."

Making Stem Cells

As the human body develops, embryonic-like stem cells multiply and transform themselves into more mature cell types through a process known as differentiation, producing all of the body’s different cell types and tissues. Past the embryonic stage, however, the human body has limited capacity to generate new cells to replace ones that have been lost or damaged.

Thus, scientists have been trying to develop ways to “reprogram” adult human cells back to a more embryonic-like, or pluripotent, state, from which they are able to divide and then change into any of the body’s cell types. Using these techniques, scientists aim to someday be able to take a patient’s own cells, say skin cells, change them into heart or brain cells, and then insert them back into the patient to fix damaged tissues. In 2006, Japanese scientists reported that they could reprogram mouse skin cells to become pluripotent simply by inserting a set of four genes into the cells.

Although the technology to generate these cells, dubbed induced pluripotent stem (iPS) cells, represents a major advance, there are some hurdles to overcome before it can be adapted to therapies.

“It takes a long time to generate iPS cells and then differentiate them into tissue-specific functional cell types," said Ding, "and it’s a tedious process. Also, what you generate is not ideal.”

Specifically, it takes some two to four weeks for scientists to create iPS cells from skin cells and the process is far from efficient, with only one cell out of thousands making the complete transformation. Furthermore, once scientists obtain iPS cells, they then have to go through the tricky procedure of inducing the iPS cells to differentiate into desired types of cells, which takes an additional two to four weeks.

In addition, the process of generating mature cells from iPS cells is not foolproof. When, for example, scientists induce iPS cells to become heart cells, the resulting cells are a mix of heart cells and some lingering iPS cells. Scientists are concerned that giving these new heart cells (along with the remaining pluripotent cells) to patients might be dangerous. When pluripotent cells are injected in mice, they cause cancer-like growths.

Because of these concerns, Ding and colleagues decided to try to tweak the process by completely bypassing the iPS stage and going directly from one type of mature cell (a skin cell) to another (a heart cell).

Bypassing the Stem Cell Stage

The team introduced the same four genes initially used to make iPS cells into adult skin fibroblast cells, but instead of letting the genes be continuously active in cells for several weeks, they switched off their activities just after a few days, long before the cells had turned into iPS cells. Once the four genes were switched off, the scientists gave a signal to the cells to make them turn into heart cells.

“In 11 days, we went from skin cells to beating heart cells in a dish,” said Ding. “It was phenomenal to see.”

Ding points out the protocol is fundamentally different from what has been done by other scientists in the past and notes that giving the cells a different kind of signal could turn them into brain cells or pancreatic cells.

“It is like launching a rocket," he said. "Until now, people thought you needed to first land the rocket on the moon and then from there you could go to other planets. But here we show that just after the launch you can redirect the rocket to another planet without having to first go to the moon. This is a totally new paradigm.”

In addition to better understanding the basic biology of stem cells, the next step will be to modify this technique further to remove the need for inserting the four genes, which have been linked to the development of cancer. As a result, many scientists, including Ding, have been working on new techniques to develop iPS cells without use of these genes. That has proven difficult. But with the new protocol, which bypasses the iPS cell stage, the genes are needed for a much shorter time.

“Action for such a short period of time is a lot easier to replace,” Ding noted.

In addition to Ding, authors of the paper, "Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy," are Jem A. Efe, Simon Hilcove, Janghwan Kim, and Hongyan Zhou of Scripps Research, and Kunfu Ouyang, Gang Wang, and Ju Chen of the University of California, San Diego.

The research was funded by The Scripps Research Institute, California Institute for Regenerative Medicine, Fate Therapeutics, and the Esther B. O’Keeffe Foundation.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, Scripps Research currently employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Headquartered in La Jolla, California, the institute also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

Mika Ono | Newswise Science News
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>