Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists confirm that the Justinianic Plague was caused by the bacterium Yersinia pestis

10.05.2013
Ancient DNA analyses of skeletal remains of plague victims from the 6th century AD provide information about the phylogeny and the place of origin of this pandemic

From the several pandemics generally called 'pestilences' three are historically recognized as due to plague, but only for the third pandemic of the 19th to 21st centuries AD there were microbiological evidences that the causing agent was the bacterium Yersinia pestis.

"For a long time scholars from different disciplines have intensively discussed about the actual etiological agents of the past pandemics. Only ancient DNA analyses carried out on skeletal remains of plague victims could finally conclude the debate", said Dr. Barbara Bramanti of the Palaeogenetics Group at the Institute of Anthropology at Johannes Gutenberg University Mainz (JGU).

About two years ago, she headed the international team which demonstrated beyond any doubt that Y. pestis also caused the second pandemic of the 14th-17th centuries including the Black Death, the infamous epidemic that ravaged Europe from 1346 to 1351. Bramanti and her Mainz colleague Stephanie Hänsch now cooperated with the University of Munich, the German Bundeswehr, and international scholars to solve the debate as to whether Y. pestis caused the so-called Justinianic Plague of the 6th to 8th centuries AD. The results of ancient DNA analyses carried out on the early medieval cemetery of Aschheim in Bavaria were published last week in PloS Pathogens.

They confirmed unambiguously that Y. pestis was indeed the causing agent of the first pandemic, in contrast to what has been postulated by other scientists recently. This revolutionary result is supported by the analysis of the genotype of the ancient strain which provide information about the phylogeny and the place of origin of this plague. As for the second and third pandemic, the original sources of the plague bacillus were in Asia.

"It remains questionable whether at the time of the Byzantine Emperor Justinian only one strain or more were disseminated in Europe, as it was at the time of the Black Death," suggested Bramanti and Hänsch. To further investigate this and other open questions about the modalities and route of transmission of the medieval plagues, Bramanti has recently obtained an ERC Advanced Grant for the project "The medieval plagues: ecology, transmission modalities and routes of the infection" (MedPlag) and will move to the Center for Ecological and Evolutionary Synthesis (CEES) at the University of Oslo in Norway. The CEES, chaired by Nils Chr. Stenseth, has an outstanding and rewarded record of excellence in the research on infectious diseases and in particular on Y. pestis.

The MedPlag research group is constituted by Stephanie Hänsch, Lars Walloe, Boris Schmid, Kyrre L. Kausrud and Ryan W. Easterday (University of Oslo, Norway), Mark Achtman (University of Warwick, UK), Elisabeth Carniel (Institute Pasteur, Paris, France), Raffaella Bianucci (University of Turin, Italy), Ulf Büntgen (Swiss Federal Research Institute for Forest, Snow and Landscape, Switzerland) as well as celebrated historians and archaeologists from Europe, Asia, and America.

Publication:
Harbeck M, Seifert L, Hänsch S, Wagner DM, Birdsell D, Parise KL, Wiechmann I, Grupe G, Thomas A, Keim P, Zöller L, Bramanti B, Riehm JM, Scholz HC (2013) Yersinia pestis DNA from Skeletal Remains from the 6th Century AD Reveals Insights into Justinianic Plague. PLoS Pathog 9(5): e1003349
doi:10.1371/journal.ppat.1003349

Further information:
Dr. Barbara Bramanti
Palaeogenetics Group
Institute of Anthropology
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone +49 6131 39-38453
e-mail: bramanti@uni-mainz.de
http://www.uni-mainz.de/FB/Biologie/Anthropologie/MolA/Deutsch/Mitarbeiter/Bramanti.html

Weitere Informationen:

http://www.uni-mainz.de/presse/16374_ENG_HTML.php
- press release ;
http://www.uni-mainz.de/FB/Biologie/Anthropologie/MolA/English/Staff/Bramanti.html

- Dr. Barbara Bramanti ;

http://www.uni-mainz.de/presse/13883_ENG_HTML.php
- "Yersinia pestis bacteria clearly identified as the cause of the big plague epidemic of the Middle Ages" (JGU press release, 8 Oct. 2010)

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/

Further reports about: CEES DNA analyses MedPlag Palaeogenetics Yersinia pestis ancient DNA plague

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>