Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Complete First Genome Mapping of Molecule Found in Human Embryonic Stem Cells That May Regulate Gene Expression

25.07.2011
Stem cell researchers at UCLA have generated the first genome-wide mapping of a DNA modification called 5-hydroxymethylcytosine (5hmC) in embryonic stem cells, and discovered that it is predominantly found in genes that are turned on, or active.

The finding by researchers with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA may prove to be important in controlling diseases like cancer, where the regulation of certain genes plays a role in disease development.

“Any way you can control genes will be hugely important for human disease and cancer,” said Steven E. Jacobsen, a professor of molecular, cell and developmental biology in the Life Sciences and a Howard Hughes Medical Institute investigator. “Cancer is generally a problem of genes being inappropriately turned off or mutated, like tumor suppressors genes, or genes that should be off getting switched on.”

The study appears in the July issue of the journal Genome Biology.

5hmC is formed from the DNA base cytosine by adding a methyl group and then a hydroxy group. The molecule is important in epigenetics - the study of changes in gene expression caused by mechanisms other than changes in the DNA sequence - because the newly formed hydroxymethyl group on the cytosine can potentially switch a gene on and off, Jacobsen said.

The molecule 5hmC was only recently discovered, and its function has not been clearly understood, Jacobsen said. Until now, researchers didn’t know where 5hmC was located within the genome.

“That is important to know because it helps you to understand how it is functioning and what it’s being used for,” said Jacobsen, who also is a researcher with UCLA’s Jonsson Comprehensive Cancer Center. “We had known that DNA could be modified by 5hmC, but it wasn’t clear where on the genome this was occurring.”

Jacobsen, whose lab studies the molecular genetics and genomics of DNA methylation patterning, used genomics to define where in human embryonic stem cells the 5hmC was present. They used human embryonic stem cells because it had been shown previously that the molecule is abundant in those cells, as well as in brain cells, Jacobsen said.

In the study, Jacobsen found that 5hmC was associated with genes and tended to be found on genes that were active. The study also revealed that 5hmC was present on a type of DNA regulatory element, called enhancers, which help control gene expression. In particular, 5hmC was present on enhancers that are crucial for defining the nature of the human embryonic stem cells.

The results suggest that 5hmC plays a role in the activation of genes. This is opposite of the role of the more well studied 5mC (DNA methylation), which is involved in silencing genes. This relationship is in line with the view that 5hmC is created directly from 5mC.

“If we can understand the function of 5hmC, that will lead to greater understanding of how genes are turned on and off and that could lead to the development of methods for controlling gene regulation,” Jacobsen said.

Moving forward, Jacobsen and his team will seek to uncover the mechanism by which 5hmC is created from DNA methylation and how it becomes localized to particular areas of the genome, such as the enhancers.

The two-year study was funded by the Howard Hughes Medical Institute, a Fred Eiserling and Judith Lengyel Graduate Doctoral Fellowship, the Leukemia & Lymphoma Society, the National Institutes of Health and by an Innovation Award from the Eli and Edythe Broad Center of Regenerative Medicine & Stem Cell Research at UCLA.

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA’s Jonsson Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu.

Kim Irwin | Newswise Science News
Further information:
http://www.ucla.edu
http://www.stemcell.ucla.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>