Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists coax shy microorganisms to stand out in a crowd

03.02.2012
The communities of marine microorganisms that make up half the biomass in the oceans and are responsible for half the photosynthesis the world over, mostly remain enigmatic. A few abundant groups have had their genomes described, but the natures and functions of the rest remain mysterious.

Understanding how the changing global environment might affect these important ecosystem players is like trying to understand the solar system when all you can discern are the brightest objects in the sky.


A graphical view of tens of millions of bases of DNA extracted from a marine microbial community found in Puget Sound reveals the entangled genomes of bacteria, archaea and viruses. University of Washington scientists extracted two million of these to map the genome of one particular marine microorganism that had defied investigation. Credit: V Iverson/U of Washington

Now University of Washington scientists have advanced a method that allowed them to single out a marine microorganism and map its genome even though the organism made up less than 10 percent of a water sample teeming with many millions of individuals from dozens of identifiable groups of microbes.

Typically researchers have had to isolate an organism and culture it in a lab before they could begin to crack its genome.
"We've done the opposite," said Vaughn Iverson, a UW doctoral student in oceanography and lead author of a report in the Feb. 2 issue of the journal Science.

"We went to the environment, didn't make any attempt to isolate any of the organisms in a laboratory sense and, instead, extracted the DNA from everything in the sample," he said. "It's a technique known as metagenomics. The UW's innovation was to develop computational methods to simultaneously sequence all the parts and then reconstruct the chosen genome."

The researchers determined the genome of a member of the marine group II Euryarchaeota, something that has defied investigators since those microorganisms were first detected about a decade ago. They are found widely across the world's oceans so – although not always abundant – biologists assume they have some important function, said Virginia Armbrust, UW professor of oceanography and corresponding author on the Science paper. The resulting genome offers hints that Euryarchaeota might serve as a kind of cleanup crew after diatoms, another ocean microorganism, bloom and die.

"Ocean microorganisms are regulators of large biogeochemical cycles so we need to understand the different members of those communities," Armbrust said. "As we change coastal communities – for better or for worse – we need to understand the players that are there."

The genome also clarified the origin of a gene that allows marine group II Euryarchaeota, as well as many marine bacteria, to harvest energy directly from sunlight, with no photosynthesis involved.

The approach advanced by the UW team isn't just useful for studying microorganisms in the oceans, but also for those found in soils and algal communities with potential for biofuels, or for understanding emerging strains of antibiotic-resistant bacteria that threaten human or animal health, Iverson said. The UW approach takes less time and money.

"Having to culture things to sequence them is an extra step and time consuming if they're difficult to culture," he said. "It becomes a chicken and egg problem. If you have never been able to study it, you don't know what it needs. But in order to study it, you must provide the environment in the lab that it requires."

"If microbiologists can get the DNA directly and sequence it without having to culture it, that's a big advantage."

Metagenomics – extracting DNA from whole microbial communities and sequencing it to reveal genes – has been used for about a decade with marine microorganisms. Sequencing equipment and methods have leapt forward since then, thanks to many researchers and companies, the UW scientists said.

But previous techniques allowed scientists to reconstruct an organism's genome only if the organism made up a third or more of a sample. The UW team showed how to construct the genome of marine group II Euryarchaeota even though it comprised only 7 percent of the cells found in 100 liters of water from Puget Sound near Seattle.

The sample was analyzed using equipment purchased with funding to Armbrust from the Gordon and Betty Moore Foundation, which also paid for Iverson's work. The project was conducted in labs run by Armbrust and co-author Robert Morris, a UW assistant professor of oceanography. Other co-authors are Christian Frazar, Chris Berthiaume and Rhonda Morales, all with the UW.

"Now you can afford to get things that are a much smaller fraction of your overall sample," Iverson said. "That's what's really new – to assemble something with a genome that is not closely related to anything else that is known, so there are no templates or references to work from, and to discern organisms making up less than10 percent of a sample from a complex community."

For more information:
Armbrust, 206-616-1783, 206-616-1570, armbrust@ocean.washington.edu
Iverson, 206-221-7146, vsi@uw.edu

Sandra Hines | EurekAlert!
Further information:
http://www.uw.edu

More articles from Life Sciences:

nachricht Clock stars: Astrocytes keep time for brain, behavior
27.03.2017 | Washington University in St. Louis

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>