Scientists clock on to how sunlight shapes daily rhythms

Scientists studying the daily activity cycle in plants – known as circadian rhythms – have discovered a finely tuned process that enables the plant's genes to respond to the times of dawn and dusk each day, as well as the length of daylight in between.

This system helps the plant to reset its internal clock every day in response to seasonal changes in daylight, which helps the plant control the timing of key activities such as growth and flowering.

The findings shed light on how living things, including people, respond to patterns of daylight, and how our bodies respond when our daily rhythms are interrupted, for example by global travel or unsociable working hours.

Circadian rhythms – which are found in most living things – influence many biological functions that vary throughout the day. In people, these include sleepiness, body temperature, blood pressure, and physical strength.

Researchers at the University of Edinburgh used mathematical models to show how much the plants' rhythms accounted for dawn and dusk as well as day length.

The study, published in Molecular Systems Biology, was carried out with the Universities of Warwick and Central Lancashire and the Hungarian Academy of Sciences. It was funded by the Biotechnology and Biological Sciences Research Council and the Engineering and Physical Sciences Research Council.

Professor Andrew Millar of the University of Edinburgh's School of Biological Sciences, who led the study, said: “Our results give us valuable information on how plants – and people – respond to changing lengths of day. It could give a new way to understand how to cope when our daily rhythms of light and dark are interrupted.”

Media Contact

Catriona Kelly EurekAlert!

More Information:

http://www.ed.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors