Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists capture most detailed images yet of humans' tiny cellular machines


A grandfather clock is, on its surface, a simple yet elegant machine. Tall and stately, its job is to steadily tick away the time. But a look inside reveals a much more intricate dance of parts, from precisely-fitted gears to cable-embraced pulleys and bobbing levers.

Like exploring the inner workings of a clock, a team of University of Wisconsin-Madison researchers is digging into the inner workings of the tiny cellular machines called spliceosomes, which help make all of the proteins our bodies need to function. In a recent study published in the journal Nature Structural and Molecular Biology, UW-Madison's David Brow, Samuel Butcher and colleagues have captured images of this machine, revealing details never seen before.

U6 RNA is red and the four RRMs of Prp24 protein are beige, orange, aqua and purple, with linkers in gray.

Credit: Brow and Butcher Labs

In their study, they reveal parts of the spliceosome — built from RNA and protein — at a greater resolution than has ever been achieved, gaining valuable insight into how the complex works and also how old its parts may be.

By better understanding the normal processes that make our cells tick, this information could some day act as a blueprint for when things go wrong. Cells are the basic units of all the tissues in our bodies, from our hearts to our brains to our skin and lungs.

... more about:
»Photon »RNA »complete »crystals »humans »proteins »structure »tiny »workings

It may also help other scientists studying similar cellular machinery and, moreover, it provides a glimpse back in evolutionary time, showing a closer link between proteins and RNA, DNA's older cousin, than was once believed.

"It gives us a much better idea of how RNA and proteins interact than ever before," says Brow, a UW-Madison professor of biomolecular chemistry.

The spliceosome is composed of six complexes that work together to edit the raw messages that come from genes, cutting out (hence, splicing) unneeded parts of the message. Ultimately, these messages are translated into proteins, which do the work of cells. The team created crystals of a part of the spliceosome called U6, made of RNA and two proteins, including one called Prp24.

Crystals are packed forms of a structure that allow scientists to capture three-dimensional images of the atoms and molecules within it. The crystals were so complete, and the resolution of the images so high, the scientists were able to see crucial details that otherwise would have been missed.

The team found that in U6, the Prp24 protein and RNA — like two partners holding hands — are intimately linked together in a type of molecular symbiosis. The structure yields clues about the relationship and the relative ages of RNA and proteins, once thought to be much wider apart on an evolutionary time scale.

"What's so cool is the degree of co-evolution of RNA and protein," Brow says. "It's obvious RNA and protein had to be pretty close friends already to evolve like this."

The images revealed that a part of Prp24 dives through a small loop in the U6 RNA, a finding that represents a major milestone on Brow and Butcher's quest to determine how U6's protein and RNA work together. It also confirms other findings Brow has made over the last two decades.

"No one has ever seen that before and the only way it can happen is for the RNA to open up, allow the protein to pass through, and then close again," says Butcher, a UW-Madison professor of biochemistry.

Ultimately, Butcher says they want to understand what the entire spliceosome looks like, how the machines get built in cells and how they work.

While this is the first protein-RNA link like this seen, Brow doesn't believe it is unique. Once more complete, high-resolution images are captured of other RNA-protein machines and their components, he thinks these connections will appear more commonly.

He hopes the findings mark a transition in the journey to understand these cellular workhorses.

"It's exciting studying these machines," he says. "There are only three big RNA machines. Ours evolved 2 billion years ago. But once it's figured out, it's done."

The U6 crystal structure was imaged using the U.S. Department of Energy Office of Science's Advanced Photon Source at Argonne National Laboratory. The work was funded by a joint grant from the National Institutes of Health shared by Brow and Butcher.


-- Kelly April Tyrrell, 608-262-9772 or

NOTE: An animation to accompany this release can be downloaded at

David Brow | Eurek Alert!

Further reports about: Photon RNA complete crystals humans proteins structure tiny workings

More articles from Life Sciences:

nachricht The gene of autumn colours
27.10.2016 | Hokkaido University

nachricht Polymer scaffolds build a better pill to swallow
27.10.2016 | The Agency for Science, Technology and Research (A*STAR)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>