Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists cage dead zebras in Africa to understand the spread of anthrax

23.04.2013
Infected zebra were left where they fell, but protected by electrified cage exclosures

Scavengers might not play as key a role in spreading anthrax through wildlife populations as previously assumed, according to findings from a small study conducted in Etosha National Park in northern Namibia.

Wildlife managers currently spend large amounts of money and time to control anthrax outbreaks by preventing scavengers from feeding on infected carcasses.

The effort might be ill spent, according to results published in Applied and Environmental Microbiology by an international consortium of researchers led by Steven Bellan, an ecologist at The University of Texas at Austin.

Carrion produced by anthrax deaths feeds many scavengers, including jackals, hyena, vultures, marabou storks and occasionally even lions. These scavengers have evolved to be able to digest infected carrion without contracting the infection. Herbivorous animals more vulnerable to anthrax include zebra, springboks, elephants and wildebeest.

It has been thought that scavengers change the environment in which the anthrax bacteria are living by opening herbivores' carcasses, enabling more production of spores — the infectious life stage of the anthrax bacteria.

"The hypothesis is that when a carcass is intact, the anthrax bacteria are forced into a kind of death match with putrefying bacteria from the gastrointestinal tract," said Bellan, a postdoctoral researcher in the lab of biologist Lauren Ancel Meyers. "But when the body is opened to the air, either by a scavenger or the hemorrhaging from all bodily orifices that occurs at death, the anthrax bacteria can escape that competition and more successfully produce spores."

According to this hypothesis, the scavenging also allows the carcasses' bodily fluids to leak into the soil, leading to more spores contaminating the soil. Combined, this might increase the likelihood of spread to vulnerable herbivores as they move and eat among the grasses.

In order to test the hypothesis, the researchers found seven zebra and one wildebeest that had just died in the wild from anthrax infection. All of the carcasses were left where they fell, but four were protected from scavengers by electrified cage exclosures. The other four were left completely open to the elements.

"The goal was to allow the carcasses to exist in as natural a state as possible, while preventing scavenging," Bellan said.

Samples were then taken at regular intervals to see whether there was greater anthrax spore production in the scavenged carcasses and in the nearby soil.

The researchers found that anthrax sporulation and contamination happened to a similar degree at both the scavenged and unscavenged carcasses.

"It appears that the anthrax bacteria can survive for some time in the carcass even though it may be competing with other bacteria," said Bellan. "It also appears that fluids can escape from the carcass into the soil via mechanisms other than scavenging or through hemorrhages occurring at the time of death. It looks like bloating caused by gases produced during putrefaction and maggot feeding activity are capable of independently rupturing carcass skin."

Bellan cautions that the experiment was a limited one, conducted on a small number of samples. But he said it does suggest a need for some re-evaluation of practices aimed at keeping scavengers away from anthrax carcasses.

Steve Bellan | EurekAlert!
Further information:
http://www.utexas.edu/

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>