Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists block Ebola infection in cell-culture experiments

25.06.2009
Accomplishment could lead to first therapy for deadly disease

Researchers at the University of Texas Medical Branch at Galveston have discovered two biochemical pathways that the Ebola virus relies on to infect cells. Using substances that block the activation of those pathways, they've prevented Ebola infection in cell culture experiments — potentially providing a critical early step in developing the first successful therapy for the deadly virus.

Ebola inflicts severe and often fatal hemorrhagic fever on its victims, producing 90 percent mortality rates in some outbreaks. No vaccine exists for the virus, and it is considered a high-risk agent for bioterrorism. Natural Ebola outbreaks strike periodically, often with devastating effect; recent examples include outbreaks in Uganda in 2008 and the Democratic Republic of the Congo in 2007.

The UTMB team took a new approach to stopping viral infection, using powerful new computational and analytical techniques to focus more on the host cell than the virus, according to microbiology and immunology associate professor Robert Davey.

"The premise for this work is that the virus is essentially nothing without a cell," said Davey, lead author of a paper on the research appearing this month in the journal Drug Discovery Research. "It needs to rely on many cell proteins and factors for it to replicate. The idea is that if we can suppress the expression of those cell proteins for just a short time, we can then stop the disease in its tracks."

To identify the critical proteins, the UTMB researchers — including research scientist Andrey A. Kolokoltsov, assistant professor Mohammad F. Saeed, postdoctoral fellow Alexander N. Freiberg and assistant professor Michael R. Holbrook — first conducted large-scale screening experiments using sets of cells treated with small interfering RNA (siRNA) to block 735 different genes that might produce proteins important to Ebola infection. They then added Ebola "pseudotype" viruses, artificially created virus particles made by wrapping Ebola envelope proteins around a core of genetic material from another virus. (The resulting viruses behave just like Ebola when infecting a cell, but are safe enough to work with in an ordinary lab.)

"We got a number of hits, quite a lot of places where the virus wasn't infecting the cells," Davey said. "The problem was then to understand what those hits meant."

To make sense of the data, the researchers turned to a newly developed statistical algorithm designed especially to prioritize the results of siRNA screens. After subjecting that output to further computational analysis, they found that two networks of biochemical reactions seemed particularly important to Ebola's entry into cells: The PI3 kinase pathway and the CAMK2 pathway. Since drugs to block both pathways are available, the UTMB group decided to investigate whether they would interfere with Ebola infection of cells — first using virus pseudotypes, and then, in UTMB's maximum containment BSL4 "spacesuit" lab, with Ebola Zaire itself, the variety of the virus most associated with high mortality rates.

"With the real virus in the BSL4, we found that the PI3 kinase inhibitor dropped virus titers by 65 percent, and if we used drugs which block CAMK2 function, it was just killed — stopped dead," Davey said. "This is really, very, very interesting because this pathway has a lot of potential for future pharmaceutical exploitation."

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>