Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists block Ebola infection in cell-culture experiments

25.06.2009
Accomplishment could lead to first therapy for deadly disease

Researchers at the University of Texas Medical Branch at Galveston have discovered two biochemical pathways that the Ebola virus relies on to infect cells. Using substances that block the activation of those pathways, they've prevented Ebola infection in cell culture experiments — potentially providing a critical early step in developing the first successful therapy for the deadly virus.

Ebola inflicts severe and often fatal hemorrhagic fever on its victims, producing 90 percent mortality rates in some outbreaks. No vaccine exists for the virus, and it is considered a high-risk agent for bioterrorism. Natural Ebola outbreaks strike periodically, often with devastating effect; recent examples include outbreaks in Uganda in 2008 and the Democratic Republic of the Congo in 2007.

The UTMB team took a new approach to stopping viral infection, using powerful new computational and analytical techniques to focus more on the host cell than the virus, according to microbiology and immunology associate professor Robert Davey.

"The premise for this work is that the virus is essentially nothing without a cell," said Davey, lead author of a paper on the research appearing this month in the journal Drug Discovery Research. "It needs to rely on many cell proteins and factors for it to replicate. The idea is that if we can suppress the expression of those cell proteins for just a short time, we can then stop the disease in its tracks."

To identify the critical proteins, the UTMB researchers — including research scientist Andrey A. Kolokoltsov, assistant professor Mohammad F. Saeed, postdoctoral fellow Alexander N. Freiberg and assistant professor Michael R. Holbrook — first conducted large-scale screening experiments using sets of cells treated with small interfering RNA (siRNA) to block 735 different genes that might produce proteins important to Ebola infection. They then added Ebola "pseudotype" viruses, artificially created virus particles made by wrapping Ebola envelope proteins around a core of genetic material from another virus. (The resulting viruses behave just like Ebola when infecting a cell, but are safe enough to work with in an ordinary lab.)

"We got a number of hits, quite a lot of places where the virus wasn't infecting the cells," Davey said. "The problem was then to understand what those hits meant."

To make sense of the data, the researchers turned to a newly developed statistical algorithm designed especially to prioritize the results of siRNA screens. After subjecting that output to further computational analysis, they found that two networks of biochemical reactions seemed particularly important to Ebola's entry into cells: The PI3 kinase pathway and the CAMK2 pathway. Since drugs to block both pathways are available, the UTMB group decided to investigate whether they would interfere with Ebola infection of cells — first using virus pseudotypes, and then, in UTMB's maximum containment BSL4 "spacesuit" lab, with Ebola Zaire itself, the variety of the virus most associated with high mortality rates.

"With the real virus in the BSL4, we found that the PI3 kinase inhibitor dropped virus titers by 65 percent, and if we used drugs which block CAMK2 function, it was just killed — stopped dead," Davey said. "This is really, very, very interesting because this pathway has a lot of potential for future pharmaceutical exploitation."

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>