Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists announce human intestinal stem cell 'breakthrough' for regenerative medicine

05.09.2011
Human colon stem cells have been identified and grown in a lab-plate for the first time.

This achievement, made by researchers of the Colorectal Cancer Lab at the Institute for Research in Biomedicine (IRB Barcelona) and published in Nature Medicine, is a crucial advance towards regenerative medicine.

Throughout life, stem cells of the colon regenerate the inner layer of our large intestine in a weekly basis. For decades scientists had evidences of the existence of these cells yet their identity remained elusive. Scientists led by the ICREA Professor and researcher at the Institute for Research in Biomedicine (IRB Barcelona) Eduard Batlle discovered the precise localization of the stem cells in the human colon and worked out a method that allows their isolation and in vitro expansion, that is their propagation in lab-plates. Growing cells outside the body generally requires providing the cells in a lab-plate with the right mix of nutrients, growth factors and hormones. But in the same way that each of the more than 200 types of cells in our body differs from the others so too do optimal growing conditions in the lab. Consequently, human adult stem cell culture in labs has been a truly impossible mission until now.

Batlle's team has also established the conditions for maintain living human colon stem cells (CoSCs) outside of the human body: "This is the first time that it has been possible to grow single CoSCs in lab-plates and to derive human intestinal stem cell lines in defined conditions in a lab setting," explains the IRB Barcelona researcher Peter Jung, first author of the study together with Toshiro Sato, from the University Medical Center Utrecht in The Netherlands.

The development, published by Batlle's research group in the prestigious journal Nature Medicine, arrives after more than 10 years of intense research focused on the characterization of the biology of the intestinal stem cells and its connection with cancer. The research has been made possible by close collaboration between Batlle's team and the group led by Hans Clevers at the Hubretcht Institute and University Medical Center Utrecht in The Netherlands, and María A. Blasco at the Spanish National Cancer Research Centre in Madrid (Spain). "For years, scientists all over the world have been trying to grow intestinal tissue in lab-plates; testing different conditions; using different nutritive media. But because the vast majority of cells in this tissue are in a differentiated state in which they do not proliferate, they survived only for a few days", explains Jung. "The aim of this study was to find a way to identify and select individual CoSCs and to grow them while maintaining their undifferentiated and proliferative state in lab conditions. Thus, we would be able to model how they grow —in number— and differentiate into normal intestinal epithelial cells in lab-plates", continues Jung. The scientific community now has a defined 'recipe' for isolating CoSCs and deriving stable CoSCs lines, which have the capacity to grow undifferentiated for months. In fact, "now we can maintain stem cells in a plate up to 5 months or we can induce these cells to differentiate artificially, as they do inside our bodies".

"This achievement opens up an exciting new area of research with the potential to bring about a huge breakthrough in regenerative medicine", says Jung. Regenerative medicine — or the idea of repairing the body by developing new tissues and organs as the old ones wear out— involves growing new cells from patients into tissues and organs in a lab. However, the main element for making regenerative medicine a reality, namely adult stem cells, are just starting to be understood. "Now that guidelines for growing and maintaining colon stem cells in the lab are in place, we have an ideal platform that could help the scientific community to determine the molecular bases of gastrointestinal cell proliferation and differentiation. It is also suspected that alterations in the biology of CoSCs are at origin of several diseases affecting the gastrointestinal tract, such as colorectal cancer or Crohn's disease, an autoimmune and inflammatory disorder. Our discovery also paves the way to start exploring this exciting field," finishes Jung.

Itziar Castanedo | EurekAlert!
Further information:
http://www.irbbarcelona.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>