Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists announce human intestinal stem cell 'breakthrough' for regenerative medicine

05.09.2011
Human colon stem cells have been identified and grown in a lab-plate for the first time.

This achievement, made by researchers of the Colorectal Cancer Lab at the Institute for Research in Biomedicine (IRB Barcelona) and published in Nature Medicine, is a crucial advance towards regenerative medicine.

Throughout life, stem cells of the colon regenerate the inner layer of our large intestine in a weekly basis. For decades scientists had evidences of the existence of these cells yet their identity remained elusive. Scientists led by the ICREA Professor and researcher at the Institute for Research in Biomedicine (IRB Barcelona) Eduard Batlle discovered the precise localization of the stem cells in the human colon and worked out a method that allows their isolation and in vitro expansion, that is their propagation in lab-plates. Growing cells outside the body generally requires providing the cells in a lab-plate with the right mix of nutrients, growth factors and hormones. But in the same way that each of the more than 200 types of cells in our body differs from the others so too do optimal growing conditions in the lab. Consequently, human adult stem cell culture in labs has been a truly impossible mission until now.

Batlle's team has also established the conditions for maintain living human colon stem cells (CoSCs) outside of the human body: "This is the first time that it has been possible to grow single CoSCs in lab-plates and to derive human intestinal stem cell lines in defined conditions in a lab setting," explains the IRB Barcelona researcher Peter Jung, first author of the study together with Toshiro Sato, from the University Medical Center Utrecht in The Netherlands.

The development, published by Batlle's research group in the prestigious journal Nature Medicine, arrives after more than 10 years of intense research focused on the characterization of the biology of the intestinal stem cells and its connection with cancer. The research has been made possible by close collaboration between Batlle's team and the group led by Hans Clevers at the Hubretcht Institute and University Medical Center Utrecht in The Netherlands, and María A. Blasco at the Spanish National Cancer Research Centre in Madrid (Spain). "For years, scientists all over the world have been trying to grow intestinal tissue in lab-plates; testing different conditions; using different nutritive media. But because the vast majority of cells in this tissue are in a differentiated state in which they do not proliferate, they survived only for a few days", explains Jung. "The aim of this study was to find a way to identify and select individual CoSCs and to grow them while maintaining their undifferentiated and proliferative state in lab conditions. Thus, we would be able to model how they grow —in number— and differentiate into normal intestinal epithelial cells in lab-plates", continues Jung. The scientific community now has a defined 'recipe' for isolating CoSCs and deriving stable CoSCs lines, which have the capacity to grow undifferentiated for months. In fact, "now we can maintain stem cells in a plate up to 5 months or we can induce these cells to differentiate artificially, as they do inside our bodies".

"This achievement opens up an exciting new area of research with the potential to bring about a huge breakthrough in regenerative medicine", says Jung. Regenerative medicine — or the idea of repairing the body by developing new tissues and organs as the old ones wear out— involves growing new cells from patients into tissues and organs in a lab. However, the main element for making regenerative medicine a reality, namely adult stem cells, are just starting to be understood. "Now that guidelines for growing and maintaining colon stem cells in the lab are in place, we have an ideal platform that could help the scientific community to determine the molecular bases of gastrointestinal cell proliferation and differentiation. It is also suspected that alterations in the biology of CoSCs are at origin of several diseases affecting the gastrointestinal tract, such as colorectal cancer or Crohn's disease, an autoimmune and inflammatory disorder. Our discovery also paves the way to start exploring this exciting field," finishes Jung.

Itziar Castanedo | EurekAlert!
Further information:
http://www.irbbarcelona.org

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>