Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists aim to starve lung tumours

07.05.2012
Enzyme regulates the division of tumour cells and blood vessel growth in the cancer tissue

Lung cancer is the leading cause of cancer death throughout the world. Standard treatment methods do not usually result in long-term recovery. In addition to the proliferation of the tumour cells, the growth of blood vessels controls tumors development.



Formation of PDE4 in oxygen-deficient lung tumour cells. Lung cells produce PDE4 (stained green: left) even if their oxygen content is normal. More PDE4 is produced (right) if they are oxygen-deficient (hypoxia). The cell nuclei are stained blue. © Max Planck Institute for Heart and Lung Research

The blood vessel growth is controlled by several signalling molecules. Scientists from the Max Planck Institute for Heart and Lung Research in Bad Nauheim and Justus Liebig University Giessen have discovered a molecule that plays a key role in this process. They succeeded in reducing tumour growth in their experiments by blocking the phosphodiesterase PDE4.

Lung cancer mainly affects smokers; however the disease can also be caused by contact with carcinogenic substances like asbestos. Chemotherapy or radiotherapy often prove insufficient in treating the disease. Hence, scientists are engaged in an intensive search for ways of halting the growth of lung tumours. The blood vessels that supply the tumour with nutrients offer a potential point of attack.

New blood vessels form to ensure an adequate supply of nutrients to the growing tumour. The growing tissue is immediately penetrated by blood vessels. The growth of the blood vessels is regulated by the tumour cells using a complex signal cascade, which is triggered initially by a low oxygen content (hypoxia) in the tumour tissue. “This state, which is known as hypoxia prompts the activation of around 100 genes in the tumour cells,” explains Rajkumar Savai, research group leader at the Max Planck institute. “In addition to the growth of blood vessels, hypoxia also stimulates the proliferation of lung cancer cells.” Three molecules play a particularly important role in this process. The activation of the genes at the beginning of the cascade is triggered by the transcription factor HIF and a messenger molecule, cAMP, is involved again at the end of the cascade. The researchers examined the third molecule that acts as a link between these two molecules in detail.

The molecule in question is a phosphodiesterase, PDE4. The scientists from Bad Nauheim and Giessen were able to demonstrate in their study that various sections of PDE4 have binding sites for HIF.

The researchers then tested the influence of a PDE4 blockade on the cells from ten different cell lines, which are characteristic of around 80 percent of lung cancers, in the laboratory. The rate of cell division in the cells treated with a PDE4 inhibitor was significantly lower and the HIF level also declined as a result.

The effect in the tumour bearing mice was particularly obvious. To observe this, the Max Planck researchers implanted a human tumour cell line under the skin of nude mice and treated the animals with the phosphodiesterase 4 inhibitor. Tumour growth in these animals declined by around 50 percent. “Our microscopic analysis revealed that the blood vessel growth in the tumours of the mice that had been treated with the inhibitor was significantly reduced. We also observed indicators of decelerated cell division in the tumour cells. Overall, the tumour growth was strongly curbed.”

Werner Seeger, Director of the MPI and Medical Director of the JLU University Hospital Giessen, reports: “We were able to show that PDE4 plays an important regulation function in cell division in lung tumours and in the development of blood vessels in cancer. Therefore, we hope that we have found a starting point for the development of a treatment here.” In the view of tumour specialist Friedrich Grimminger, Chairman of the Department of Medical Oncology in Giessen, it may be possible in future to combine the inhibition of PDE4 with traditional radiotherapy or chemotherapy. In this way, the effect of the traditional treatment measures could be reinforced and patient prognoses may improve as a result. However, further laboratory studies are required before clinical tests can be carried out.

Contacts

Dr. Rajkumar Savai
Max Planck Institute for Heart and Lung Research
Phone: +49 60 3270-5313
Fax: +49 60 3270-5211
Email: rajkumar.savai@­innere.med.uni-giessen.de
Dr. Matthias Heil
Max Planck Institute for Heart and Lung Research
Phone: +49 6032 705-1705
Fax: +49 6032 705-1704
Email: matthias.heil@­mpi-bn.mpg.de
Original publication
S. Pullamsetti, G. Banat, A. Schmall, M. Szibor, D. Pomagruk, J. Hänze, E. Kolosionek, J. Wilhelm, T. Braun, F. Grimminger, W. Seeger, R. Schermuly, R. Savai
Phosphodiesterase-4 promotes proliferation and angiogenesis of lung cancer by crosstalk with HIF.

Oncogene (2012). doi:10.1038/onc.2012.136

Dr. Rajkumar Savai | EurekAlert!
Further information:
http://www.mpg.de/5763400/lung_tumour_starvation

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>