Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Take a Giant Step for People - with Plants!

29.07.2011
Science usually progresses in small steps, but on rare occasions, a new combination of research expertise and cutting-edge technology produces a 'great leap forward.'

An international team of scientists, whose senior investigators include Salk Institute plant biologist Joseph Ecker, report one such leap in the July 29, 2011 issue of Science. They describe their mapping and early analyses of thousands of protein-to-protein interactions within the cells of Arabidopsis thaliana -a variety of mustard plant that is to plant biology what the lab mouse is to human biology.

"With this one study we managed to double the plant protein-interaction data that are available to scientists," says Ecker, a professor in the Plant Molecular and Cellular Biology Laboratory. "These data along with data from future 'interactome' mapping studies like this one should enable biologists to make agricultural plants more resistant to drought and diseases, more nutritious, and generally more useful to mankind."

The four-year project was funded by an $8 million National Science Foundation grant, and was headed by Marc Vidal, Pascal Braun, David Hill and colleagues at the Dana Farber Cancer Institute in Boston; and Ecker at the Salk Institute. "It was a natural collaboration," says Vidal, "because Joe and his colleagues at the Salk Institute had already sequenced the Arabidopsis genome and had cloned many of the protein-coding genes, whereas on our side at the Dana Farber Institute we had experience in making these protein interaction maps for other organisms such as yeast."

In the initial stages of the project, members of Ecker's lab led by research technician Mary Galli converted most of their accumulated library of Arabidopsis protein-coding gene clones into a form useful for protein-interaction tests. "For this project, over 10,000 'open reading frame' clones were converted and sequence verified in preparation for protein-interaction screening," says Galli.

Vidal, Braun, Hill and their colleagues systematically ran these open reading frames through a high quality protein-interaction screening process, based on a test known as the yeast two-hybrid screen. Out of more than forty million possible pair combinations, they found a total of 6,205 Arabidopsis protein- protein interactions, involving 2,774 individual proteins. The researchers confirmed the high quality of these data, for example by showing their overlap with protein interaction datafrom past studies.

The new map of 6,205 protein partnerings represents only about two percent of the full protein- protein "interactome" for Arabidopsis, since the screening test covered only a third of all Arabidopsis proteins, and wasn't sensitive enough to detect many weaker protein interactions. "There will be larger maps after this one," says Ecker.

Even as a preliminary step, though, the new map is clearly useful. The researchers were able to sort the protein interaction pairs they found into functional groups, revealing networks and "communities" of proteins that work together. "There had been very little information, for example, on how plant hormone signaling pathways communicate with one another," says Ecker. "But in this study we were able to find a number of intriguing links between these pathways."

A further analysis of their map provided new insight into plant evolution. Ecker and colleagues Arabidopsis genome data, reported a decade ago, had revealed that plants randomly duplicate their genes to a much greater extent than animals do. These gene duplication events apparently give plants some of the genetic versatility they need to stay adapted to shifting environments. In this study, the researchers found 1900 pairs of their mapped proteins that appeared to be the products of ancient gene-duplication events.

Using advanced genomic dating techniques, the researchers were able to gauge the span of time since each of these gene-duplication events - the longest span being 700 million years - and compare it with the changes in the two proteins' interaction partners. "This provides a measure of how evolution has rewired the functions of these proteins," says Vidal. "Our large, high-quality dataset and the naturally high frequency of these gene duplications in Arabidopsis allowed us to make such an analysis for the first time."

The researchers found evidence that the Arabidopsis protein partnerships tend to change quickly after the duplication event, then more slowly as the duplicated gene settles into its new function and is held there by evolutionary pressure. "Even though the divergence of these proteins' amino-acid sequences may continue, the divergence in terms of their respective partners slows drastically after a rapid initial change, which we hadn't expected to see," Vidal says.

In the July 29 issue of Science researchers from the Arabidopsis interactome mapping study reported yet another demonstration of the usefulness of their approach. Led by Jeffery L. Dangl of the University of North Carolina at Chapel Hill, they examined Arabidopsis protein interactions with the bacterium Pseudomonas syringae (Psy) and a fungus-like microbe called Hyaloperonospora arabidopsidis (Hpa). "Even though these two pathogens are separated by about a billion years of evolution, it turns out that the 'effector' proteins they use to subvert Arabidopsis cells during infection are both targeted against the same set of highly connected Arabidopsis proteins," says Ecker. "We looked at some of these targeted Arabidopsis proteins and found evidence that they serve as 'hubs' or control points for the plant immune system and related systems."

Ecker and his colleagues hope that these studies mark the start of a period of rapid advancement in understanding plant biology, and in putting that knowledge to use for human benefit. "This starts to give us a big, systems-level picture of how Arabidopsis works, and much of that systems-level picture is going to be relevant to - and guide further research on - other plant species, including those used in human agriculture and even pharmaceuticals,"Ecker says.

The "Arabidopsis Interactome Mapping Consortium" consists of over 20 national and international laboratories that contribute to this study with support from a number of funding agencies including the National Science Foundation and the National Institutes of Health.

About the National Science Foundation (NSF):
The National Science Foundation is an independent federal agency created by Congress in 1950 "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense..." NSF's goals--discovery, learning, research infrastructure and stewardship--provide an integrated strategy to advance the frontiers of knowledge, cultivate a world-class science and engineering workforce, expand the scientific literacy of all citizens, and build the nation's research capability through investments in advanced instrumentation and facilities, and support excellence in science and engineering research and education through a capable and responsive organization. For more information about NSF, visit www.nsf.gov.
About the National Institutes of Health (NIH):
The Nation's Medical Research Agency - includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.
About the Salk Institute for Biological Studies:
The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark. For more information about the Salk Institute, visit www.salk.edu

Andy Hoang | Newswise Science News
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>