Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists 1: Animal Rights Extremists 0

04.08.2008
A new proof on why mice and other mammals are good experimental models to understand human biology

The architecture of haematopoiesis – which is the process by which all blood cells originate – is essentially the same throughout the mammal world, report scientists in the Proceedings of the Royal Society.

This is an unexpected result considering the thousands of mammals’ species with a myriad of habitats and lifestyles, as so well demonstrated when comparing the 30 mm flying bumblebee bat and the 30 metre-long aquatic blue whale both mammals.

But the work now published shows that the variations in the blood system - necessary to adapt to the evolutionary changes found within the mammals’ world -can be explained quantitatively (for example by producing more cells or having the cells dividing faster), and are directly correlated to the animals’ body mass and do not require any fundamental alteration in the haematopoietic process. This unified view of haematopoiesis - where both its architecture and function is maintained throughout a group as important as the mammals - have many and important implications.

For a start it gives support to the view that mice and other small mammals are good experimental models to understand humans’ physiology as well as to develop new treatments to human diseases. And used directly in humans these results can help improve things as diverse as bone marrow transplants or leukaemia’s treatments just to mention a few examples

The amazing complexity of the biological world can be explained (and predicted) mathematically and formulas that relate different biological functions, anticipating how a system will perform, are major tools to understand living organisms. One such example is allometric scaling a mathematical technique that describes the relationships between the rate of some biological variables (for example the number of cell divisions per time) and the organism’s body mass. In biology size is crucial as all body functions are related to the animal’s metabolism, and this is linked to its body mass. So, in fact, many biological variables can be directly correlated to mass. Allometric scaling formulas describe these relationships and are used to understand and even predict the behaviour of the body.

And a phenomenon that recently has been linked to mass via allometric models is haematopoiesis - the process by which all blood cells are formed, from platelets (crucial to blood coagulation) to white blood cells (the basis of the immune response) and red blood cells ( responsible for carrying oxygen throughout the body to all cells).

Scientists know that the haematopoietic process is organised as a tree where hematopoietic stem cells (HSC) - which have the ability to differentiate into all the different blood cells - represent the trunk from which a multitude of branches comes out, each dividing again and again, until in the end a type of blood cell is generated. It is also known that HSC are divided into two groups, quiescent HSC - which serve as a reserve pool - and active HSC - those that divide and differentiate into the many blood cells. Although the basis of the whole process is relatively well known, the possible differences between very different animals - for example humans and insects or even the bumblebee bat and the blue whale - are much less clear

And, as HSC are the root of the whole haematopoietic process, to understand better their behaviour in different animals has been seen as a way to get closer to the real nature of haematopoiesis changes throughout the different animals.

And in fact, recent research is beginning to give us some clues on what can be going on. For a start, through mathematical reasoning it has been shown in several mammals how HSC proliferation is related to the animal’s body mass, with these cells dividing faster in smaller organisms. These results, obtained by mathematical deduction, were supported by experimental work (so done in a laboratory) in non-human primates that revealed that the smaller the primates, the faster was their HSC proliferation.

Finally it was also shown that active HSC from different organisms when grown in laboratory– so out of the body– divided at very similar rates, a result strikingly different from what was seen when their division was measured inside the animal. This last result further supported the idea that the organisms’ metabolism affected HSC division explaining the different division rates found in different sized animals.

All these observations led David Dingli, a haematologist from the Mayo Clinic in Minnesota USA, together with two theoretical physicists, Arne Traulsen and Jorge M. Pacheco respectively from the Mayo Clinic in Minnesota USA, the Max Planck Institute for Evolutionary Biology in Germany and the Department of Physics at Lisbon University in Portugal, to decide to use allometric tools to understand HSC behaviour and the possible haematopoiesis changes throughout mammal’s evolution.

Their first results predicted that HSC replicate faster in a mouse than in a cat than in a human and they were even able to calculate the approximate HSC divisions’ rate in each of these species. Both results were supported by experimental data from other researchers, showing the validity of the allometric scaling approach used by Dingli, Traulsen and Pacheco.

Their second prediction involved the number of divisions that any given HSC goes during its life time, which they concluded was constant among mammals, something that has been proposed before but never proved. Dingli, Traulsen and Pacheco, however, could explain this allometrically since, even if smaller animals have faster HSC divisions, bigger animals with slower HSC rates compensate this by having a longer life expectancy.

To further confirm their model the researchers calculated the daily bone marrow production of HSC in several mammals to find that the number of cells found by them were compatible with those obtained by directly working in animals, with the number of cells produced by a mouse during its lifetime (around 2 years) similar to the ones produced by humans in one day, and cats in a week. These results supported the validity of the scientists’ first two findings and their model. It also revealed how the haematopoietic demands of different animals is so very different.

Dingli, Traulsen and Pacheco’s results, together with experimental data by others, strongly support the idea of a common hematopoietic process, at least among mammals, despite the changes that appeared throughout evolution within this group. Adaptation to the different needs of different mammals is simply a question of quantity - different HSC numbers or division rates - directly related to the animal’s body mass and without affecting the basic architecture and functions of the haematopoietic process. In this way smaller animals, like mice, as they need less active HSC differentiating, may simply have a bigger HSC quiescent compartment After all, the main principle of evolutionary biology is “maintain what is effective, adapting in simple ways to higher complexities when necessary”.

Dingli, Traulsen and Pacheco’s work clearly shows how mathematical modelling – so many time ignored by pure biologists - can help understand complex biological systems. The model here described can now, for example, help to predict the minimum number of cells necessary for an optimum bone marrow transplant, or bone marrow dynamics both in health or disease or even how to better extrapolate to humans, experimental results found when studying HSC in animal models.

And it is, no doubt, an important support for the validity of using of animal models to understand the biology of humans, contrary to the opinion of so many animal rights groups. Catarania Amorim

This article can be republished without charge provided Catarina Amorim is acknowledged as the source at the top or the bottom of the story. If you use the full piece please add: Piece by Catarina Amorim (catarina.amorim at linacre.ox.ac.uk)

Contacts for the authors of the original paper
Jorge M. Pacheco - pacheco@cii.fc.ul.pt
tel: +351 21 790 4891
fax: +351 21 795 4288
David Dingli - dingli.david@mayo.edu

Catarina Amorim | alfa
Further information:
http://journals.royalsociety.org/content/w253174843634560/

Further reports about: Biology Dingli HSC Pacheco Traulsen allometric haematopoiesis haematopoietic marrow

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>