Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists 'reprogram' mouse fat cells into clinically useful stem cells

27.07.2010
Australian scientists from the Monash Institute of Medical Research have "reprogrammed" adult mouse fat cells and neural cells to become stem cells that can differentiate into a variety of different cells (pluripotency).

The cells, called "induced pluripotent stem cells" (iPS), are nearly identical to the naturally occurring pluripotent stems cells, such as embryonic stem cells, which are highly pluripotent, in short supply and their access restricted in the U.S.

The study is published in issue 19(5) of Cell Transplantation and is now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/ .

"Induced pluripotent stem cells have revolutionized cell reprogramming," said the study's lead author, Dr. Paul J. Verma. "One challenge is to find the most appropriate cell for reprogramming. Our study demonstrated that both neural stem cells (NSCs) and adipose tissue-derived cells (ADCs) from adult mice expressed genetic pluripotency and could differentiate into the three germ layers, endoderm, mesoderm and ectoderm. The ADCs were the most amenable to reprogramming."

According to Dr. Verma, iPS cells have been shown to have many of the hallmarks of embryonic stem cells. Choosing which cells were best for reprogramming required looking at the ease of access and ease of derivation and growth of the cells in vitro. They concluded that it was likely that certain iPS cell lines will have a "higher propensity to differentiate into certain lineages (cell types)."

"This variation may be related to different levels of programming achieved," added Dr. Verma. "Many different cell types need to be investigated to generate many iPS lines for specific differentiation and different research purposes."

The research team concluded that ADCs represent a more clinically relevant cell type and that fat tissue can be easily accessed and grown easily and rapidly in cultures. Fat tissue cells, when reprogrammed, can also be prolific. The authors cited a study previously published in Cell Transplantation (16:9) suggesting that 100 ml of human fat tissue could yield one million clinically useful stem cells.

Their work takes the development of iPS cells a step closer toward their eventual clinical use in treating human diseases.

"There is considerable potential in the generation of iPS cells for the treatment of a number of disorders" said Dr. Paul Sanberg, coeditor-in-chief and Director of the Center Of Excellence for Aging and Brain Repair at the University of South Florida. "Finding the optimal source of cells to start with, is of paramount importance and this study provides reassuring data on a highly favorable source".

Contact: Dr. Paul J. Verma, Monash Institute of Medical Research 2731 Wright St. Clayton 3172 VIC Australia. Tel:+ 61 3 9594 7000; Fax: +61 3 9594 7416 Email: Paul.Verma@med.monash.edu.au

The editorial offices for Cell Transplantation are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

News Release by Randolph Fillmore, www.sciencescribe.net

David Eve | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/ct/
http://www.sciencescribe.net

More articles from Life Sciences:

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Global threat to primates concerns us all

19.01.2017 | Ecology, The Environment and Conservation

Scientist from Kiel University coordinates Million Euros Project in Inflammation Research

19.01.2017 | Awards Funding

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>