Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists 'Rebuild' Giant Moa Using Ancient DNA

02.07.2009
Scientists have performed the first DNA-based reconstruction of the giant extinct moa bird, using prehistoric feathers recovered from caves and rock shelters in New Zealand.

Researchers from the University of Adelaide and Landcare Research in New Zealand have identified four different moa species after retrieving ancient DNA from moa feathers believed to be at least 2500 years old.

The giant birds – measuring up to 2.5 metres and weighing 250 kilograms – were the dominant animals in New Zealand’s pre-human environment but were quickly exterminated after the arrival of the Maori around 1280AD.

PhD student Nicolas Rawlence from the University’s Australian Centre for Ancient DNA says until now, the scientific community has not known what the 10 different species of moa looked like. ”By using ancient DNA we have been able to connect feathers to four different moa species,” he says.

The researchers compared the feathers to others found in the sediments from red-crowned parakeets that are still living today, determining they had not faded or changed in colour. They then reconstructed the appearance of the stout-legged moa, heavy-footed moa, upland moa and the South Island giant moa.

Their findings were published today in the Proceedings of the Royal Society of London Series B.

“The surprising thing is that while many of the species had a similar, relatively plain brown plumage for camouflage, some had white-tipped feathers to create a speckled appearance,” Mr Rawlence says.

A co-author of the study, Dr Jamie Wood from Landcare Research, says it is likely that the drab colouring was driven by selection to avoid predation by the extinct Haast’s eagle, the largest and most powerful eagle in the world.

The research team also demonstrated that it is possible to retrieve DNA from all parts of the ancient feathers, not just the tip of the quill, as previously thought.

“This important finding opens the way to study DNA from museum bird skins while causing almost no damage to these valuable specimens, just by clipping a small part of a single feather,” says Dr Kyle Armstrong from the Australian Centre for Ancient DNA (ACAD).

ACAD Director Professor Alan Cooper says this finding suggests it may be possible to reconstruct the appearance of other extinct birds using feathers from fossil deposits.

“There are so many enigmatic extinct species that it would be great to see ‘clothed’," Professor Cooper says.

Nicolas Rawlence | Newswise Science News
Further information:
http://www.adelaide.edu.au

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>