Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist Studies Frogs and Fish for Answers to Human Hearing

16.03.2011
Scientists in the House Ear Institute laboratory of Andres Collazo, Ph.D., study inner ear development. Their work explores the molecules and tissues necessary for normal inner ear development in two different species that are model organisms for developmental biological studies: the African clawed frog Xenopus laevis and the zebrafish Danio rerio.

Why study frogs and fish? These are excellent subjects for study because during embryonic stages of development, the hearing and balance organs of both species greatly resemble those of humans. In addition, genomic sequencing of frogs and zebrafish has revealed that both species share the majority of the genes found in humans. By studying frogs and fish, whose eggs are fertilized and develop outside the mother, the scientists can address their hypotheses in living intact embryos.

Our inner ear develops in the embryo from a simple flap of skin called the otic placode into a complex, three dimensional structure that enables balance and hearing. The goal of Dr. Collazo’s zebrafish research is to understand at the molecular level, how and why otic placode cells decide to become neuronal, nonsensory or sensory cells.

“Zebrafish provide a powerful, easily maniplulated genetic system for understanding the role of specific molecules during development,” said Andres Collazo, Ph.D., House Ear Institute.

The main goal of the frog research is to determine which molecules and regions of the otic placode are required for normal patterning in the developing inner ear. These studies provide a better understanding of the causes of human inner ear malformations. Working with a team of scientists, Dr. Collazo, has discovered that physically removing either the front or back half of the otic placode in the Xenopus frog, results in a high percentage of mirror image duplicated inner ears. Mirror duplications generate a specific pattern in the wrong place, which helps in identifying which molecules are required for the normal layout of the inner ear. These studies also provide insights into some of the inner ear malformations seen in clinical patients.

Proper patterning, positioning and differentiation of the sensory organs within the inner ear are crucial for normal function in balance and hearing. Studies have found that the gene mutations in zebrafish, which can result in mirror duplicated inner ears, are found in molecules belonging to the cell signaling pathway designated Shh. Similarly, blocking the cell signaling pathway designated as Hh in the Xenopus frog or in zebrafish, results in two mirror image front halves and suggests that Shh signaling is necessary for patterning the back half. This is important because any future therapies developed for replacing lost sensory cells (hair cells) that detect motion in the inner ear, will require that the regenerated hair cells be accurately placed and positioned.

Dr. Collazo received his B.S. in Biology, at Cornell University, his Ph.D. in Zoology, University of California, Berkeley and was a postdoctoral fellow at California Institute of Technology. He has taught embryology during summer at the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts for the past 17 years.

Kirsten Holguin | Newswise Science News
Further information:
http://www.hei.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>