Scientist Studies Frogs and Fish for Answers to Human Hearing

Why study frogs and fish? These are excellent subjects for study because during embryonic stages of development, the hearing and balance organs of both species greatly resemble those of humans. In addition, genomic sequencing of frogs and zebrafish has revealed that both species share the majority of the genes found in humans. By studying frogs and fish, whose eggs are fertilized and develop outside the mother, the scientists can address their hypotheses in living intact embryos.

Our inner ear develops in the embryo from a simple flap of skin called the otic placode into a complex, three dimensional structure that enables balance and hearing. The goal of Dr. Collazo’s zebrafish research is to understand at the molecular level, how and why otic placode cells decide to become neuronal, nonsensory or sensory cells.

“Zebrafish provide a powerful, easily maniplulated genetic system for understanding the role of specific molecules during development,” said Andres Collazo, Ph.D., House Ear Institute.

The main goal of the frog research is to determine which molecules and regions of the otic placode are required for normal patterning in the developing inner ear. These studies provide a better understanding of the causes of human inner ear malformations. Working with a team of scientists, Dr. Collazo, has discovered that physically removing either the front or back half of the otic placode in the Xenopus frog, results in a high percentage of mirror image duplicated inner ears. Mirror duplications generate a specific pattern in the wrong place, which helps in identifying which molecules are required for the normal layout of the inner ear. These studies also provide insights into some of the inner ear malformations seen in clinical patients.

Proper patterning, positioning and differentiation of the sensory organs within the inner ear are crucial for normal function in balance and hearing. Studies have found that the gene mutations in zebrafish, which can result in mirror duplicated inner ears, are found in molecules belonging to the cell signaling pathway designated Shh. Similarly, blocking the cell signaling pathway designated as Hh in the Xenopus frog or in zebrafish, results in two mirror image front halves and suggests that Shh signaling is necessary for patterning the back half. This is important because any future therapies developed for replacing lost sensory cells (hair cells) that detect motion in the inner ear, will require that the regenerated hair cells be accurately placed and positioned.

Dr. Collazo received his B.S. in Biology, at Cornell University, his Ph.D. in Zoology, University of California, Berkeley and was a postdoctoral fellow at California Institute of Technology. He has taught embryology during summer at the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts for the past 17 years.

Media Contact

Kirsten Holguin Newswise Science News

More Information:

http://www.hei.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors