Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist Studies Frogs and Fish for Answers to Human Hearing

16.03.2011
Scientists in the House Ear Institute laboratory of Andres Collazo, Ph.D., study inner ear development. Their work explores the molecules and tissues necessary for normal inner ear development in two different species that are model organisms for developmental biological studies: the African clawed frog Xenopus laevis and the zebrafish Danio rerio.

Why study frogs and fish? These are excellent subjects for study because during embryonic stages of development, the hearing and balance organs of both species greatly resemble those of humans. In addition, genomic sequencing of frogs and zebrafish has revealed that both species share the majority of the genes found in humans. By studying frogs and fish, whose eggs are fertilized and develop outside the mother, the scientists can address their hypotheses in living intact embryos.

Our inner ear develops in the embryo from a simple flap of skin called the otic placode into a complex, three dimensional structure that enables balance and hearing. The goal of Dr. Collazo’s zebrafish research is to understand at the molecular level, how and why otic placode cells decide to become neuronal, nonsensory or sensory cells.

“Zebrafish provide a powerful, easily maniplulated genetic system for understanding the role of specific molecules during development,” said Andres Collazo, Ph.D., House Ear Institute.

The main goal of the frog research is to determine which molecules and regions of the otic placode are required for normal patterning in the developing inner ear. These studies provide a better understanding of the causes of human inner ear malformations. Working with a team of scientists, Dr. Collazo, has discovered that physically removing either the front or back half of the otic placode in the Xenopus frog, results in a high percentage of mirror image duplicated inner ears. Mirror duplications generate a specific pattern in the wrong place, which helps in identifying which molecules are required for the normal layout of the inner ear. These studies also provide insights into some of the inner ear malformations seen in clinical patients.

Proper patterning, positioning and differentiation of the sensory organs within the inner ear are crucial for normal function in balance and hearing. Studies have found that the gene mutations in zebrafish, which can result in mirror duplicated inner ears, are found in molecules belonging to the cell signaling pathway designated Shh. Similarly, blocking the cell signaling pathway designated as Hh in the Xenopus frog or in zebrafish, results in two mirror image front halves and suggests that Shh signaling is necessary for patterning the back half. This is important because any future therapies developed for replacing lost sensory cells (hair cells) that detect motion in the inner ear, will require that the regenerated hair cells be accurately placed and positioned.

Dr. Collazo received his B.S. in Biology, at Cornell University, his Ph.D. in Zoology, University of California, Berkeley and was a postdoctoral fellow at California Institute of Technology. He has taught embryology during summer at the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts for the past 17 years.

Kirsten Holguin | Newswise Science News
Further information:
http://www.hei.org

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>