Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientist Studies Frogs and Fish for Answers to Human Hearing

Scientists in the House Ear Institute laboratory of Andres Collazo, Ph.D., study inner ear development. Their work explores the molecules and tissues necessary for normal inner ear development in two different species that are model organisms for developmental biological studies: the African clawed frog Xenopus laevis and the zebrafish Danio rerio.

Why study frogs and fish? These are excellent subjects for study because during embryonic stages of development, the hearing and balance organs of both species greatly resemble those of humans. In addition, genomic sequencing of frogs and zebrafish has revealed that both species share the majority of the genes found in humans. By studying frogs and fish, whose eggs are fertilized and develop outside the mother, the scientists can address their hypotheses in living intact embryos.

Our inner ear develops in the embryo from a simple flap of skin called the otic placode into a complex, three dimensional structure that enables balance and hearing. The goal of Dr. Collazo’s zebrafish research is to understand at the molecular level, how and why otic placode cells decide to become neuronal, nonsensory or sensory cells.

“Zebrafish provide a powerful, easily maniplulated genetic system for understanding the role of specific molecules during development,” said Andres Collazo, Ph.D., House Ear Institute.

The main goal of the frog research is to determine which molecules and regions of the otic placode are required for normal patterning in the developing inner ear. These studies provide a better understanding of the causes of human inner ear malformations. Working with a team of scientists, Dr. Collazo, has discovered that physically removing either the front or back half of the otic placode in the Xenopus frog, results in a high percentage of mirror image duplicated inner ears. Mirror duplications generate a specific pattern in the wrong place, which helps in identifying which molecules are required for the normal layout of the inner ear. These studies also provide insights into some of the inner ear malformations seen in clinical patients.

Proper patterning, positioning and differentiation of the sensory organs within the inner ear are crucial for normal function in balance and hearing. Studies have found that the gene mutations in zebrafish, which can result in mirror duplicated inner ears, are found in molecules belonging to the cell signaling pathway designated Shh. Similarly, blocking the cell signaling pathway designated as Hh in the Xenopus frog or in zebrafish, results in two mirror image front halves and suggests that Shh signaling is necessary for patterning the back half. This is important because any future therapies developed for replacing lost sensory cells (hair cells) that detect motion in the inner ear, will require that the regenerated hair cells be accurately placed and positioned.

Dr. Collazo received his B.S. in Biology, at Cornell University, his Ph.D. in Zoology, University of California, Berkeley and was a postdoctoral fellow at California Institute of Technology. He has taught embryology during summer at the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts for the past 17 years.

Kirsten Holguin | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>