Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist Reports New Species of Giant Amazonian Fish

16.10.2013
Discovery highlights hazards of relocating animals among habitats

A new species of the giant fish arapaima has been discovered from the central Amazon in Brazil, raising questions about what other species remain to be discovered and highlighting the potential for ecological problems when animals are relocated from their native habitats.


These arapaima, which were photographed in a public aquarium in the Ukraine, appear to be the new species recently described by Dr. Donald Stewart of SUNY-ESF. They clearly show the elongated sensory cavity as a dark bar on the lower side of the head, a feature that is known only for A. leptosoma.

“Everybody for 160 years had been saying there’s only one kind of arapaima. But we know now there are various species, including some not previously recognized. Each of these unstudied giant fishes needs conservation assessment,” said Dr. Donald Stewart of the SUNY College of Environmental Science and Forestry (ESF), who made the discovery.

The discovery was reported in a paper Stewart recently published in the journal “Copeia.”

For two centuries, arapaima have been among the most important commercial fishes in freshwaters of the Amazon. “Arapaima have high economic, cultural and scientific value, but their diversity has been overlooked for too long,” Stewart said.

Four species of arapaima were recognized in the mid-1800s, but in 1868, Albert Günther, a scientist at the British Museum of Natural History, published an opinion that those were all one species, Arapaima gigas. Over time, Günther’s view became the prevailing wisdom.

“Until this year, no taxonomist has questioned Günther’s opinion about these iconic fishes,” Stewart wrote.

That lack of inquiry changed, however, when Stewart began studying the genus in Guyana and Brazil. “If you’re going to do conservation biology, you have to be sure about the taxonomy of the animals being studied,” he said. “If each study area has a different species, then results from one area should not be applied to manage populations in the next area.”

Delving into scientific literature from the 19th century and examining original specimens preserved at the National Museum of Natural History in Paris, Stewart concluded that all four of those originally described species were, in fact, distinct. Stewart re-described one of those original species (in a paper published in the March issue of “Copeia”) and summarized status of the other three species. Stewart’s most recent discovery came when he examined preserved arapaima at the Instituto Nacional de Pesquisas da Amazônia in Manaus, Brazil. This new description brings the total number of species to five.

The recently identified specimen was collected in 2001 near the confluence of the Solimões and Purus rivers in Amazonas State, Brazil. It is distinguished from all other arapaima by several characteristics, including the shape of sensory cavities on the head, a sheath that covers part of the dorsal fin and a distinctive color pattern. Its scientific name, A. leptosoma, is in reference to its slender body.

“Failure to recognize that there are multiple species has consequences that are far reaching,” Stewart said. “For example, there is a growing aquaculture industry for arapaima, so they are being moved about and stocked in ponds for rearing. Eventually pond-reared fishes escape and, once freed, the ecological effects are irreversible. A species that is endangered in its native habitat may become an invasive species in another habitat. The bottom line is that we shouldn't be moving these large, predatory fishes around until the species and their natural distributions are better known. Given the uncertainties, precaution is needed.”

There is also the problem that arapaima are the most historically overexploited fishes of the Amazon Basin, having been subjected to intense and largely uncontrolled fishing pressure for at least a century. “Abundances of arapaima in large expanses of their natural habitat today are near-zero, largely as a consequence of overfishing,” said Dr. Leandro Castello, an authority on arapaima in Brazil. “The likely impacts of this magnitude of overfishing on species diversity are not good.”

Stewart said the newly discovered species is on display in a public aquarium in the Ukraine, where it was identified as Arapaima gigas, the single name that has been applied to all arapaima for the past 140 years. It thus appears this new species already is being cultured and exported from South America, but under the wrong name.

Stewart’s work was supported by ESF and the National Geographic Society.

Claire B. Dunn | Newswise
Further information:
http://www.esf.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>