Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Science at cusp of 'transformational' grasp of life via cell modeling, researchers say


A paper recently published in the Journal of Molecular Biology shows how advances in molecular biology and computer science around the world soon may lead to a three-dimensional computer model of a cell, the fundamental unit of life.

According to the authors, the development could herald a new era for biological research, medical science, and human and animal health.

The image from co-author Arthur Olson's lab at the Scripps Research Institute shows a preliminary model of mycoplasma mycoides. Modeling by Ludovic Autin and David Goodsell, rendering by Adam Gardner.

Credit: The Scripps Research Institute

"Cells are the foundation of life," said Ilya Vakser, professor of computational biology and molecular biosciences and director of the Center for Computational Biology at the University of Kansas, one of the paper's co-authors.

"Recently, there has been tremendous progress in biomolecular modeling and advances at understanding life at the molecular level. Now, the focus is shifting to larger systems -- up to the level of the entire cell. We're trying to capture this emerging milestone development in computational structural biology, which is the tectonic shift from modeling individual biomolecular processes to modeling the entire cell."

The study, titled "Challenges in structural approaches to cell modeling," surveys a range of methodologies joining the march toward a simulated whole 3-D cell, including the studies of biological networks, automated construction of 3-D cell models with experimental data, modeling of protein complexes, prediction of protein interactions, thermodynamic and kinetic effects of crowding cellular membrane modeling, and modeling of chromosomes.

"A lot of techniques that are required for this are already available -- it's just a matter of putting them all together in a coherent strategy to address this problem," Vakser said. "It's hard because we're just beginning to understand the principal mechanisms of life at the molecular level -- it looks extremely complicated but doable, so we're moving very fast -- not only in our ability to understand how it works at the molecular level but to model it."

While most of these techniques are being developed separately, the authors say that considered together they represent a push forward that could provide a better basic "understanding of life at the molecular level and lead to important applications to biology and medicine."

"There are two major benefits," Vakser said. "One is our fundamental understanding of how a cell works. You can't claim you understand a phenomenon if you can't model it. So this gives us insight into basic fundamentals of life at the scale of an entire cell. On the practical side, it will give us an improved grasp of the underlying mechanisms of diseases and also the ability to understand mechanisms of drug action, which will be a tremendous boost to our efforts at drug design. It will help us create better drug candidates, which will potentially shorten the path to new drugs."

As an example, the KU researcher said a working 3-D molecular cell model could help to replace or augment phases of time-consuming and expensive drug development protocols required today to bring drug therapies from the scientist's bench to the marketplace.

Vakser said that facets of the research that could lead to a computer-simulated cell are at different levels of refinement.

"We've made advances in our ability to model protein interactions," he said. "The challenge is to put it in context of the cell, which is a densely populated milieu of different proteins and other biomolecular structures. To make the transition from a dilute solution to realistic environment encountered in the cell is probably the greatest challenge we're facing right now."

While modeling more complex human cells might be on the agenda soon, Vakser said that for the time being, research efforts will focus on modeling simple single-celled organisms.

"We go for the simplest cell possible. There are small prokaryotic cells, which involve minimalistic set of elements that are much simpler than the bigger and more complicated cells in mammals, including humans," he said. "We're trying to cut our teeth on the smallest possible cellular organisms first, then will extrapolate into more complicated cells."


Along with Vakser, the paper's authors are Wonpil Im of Lehigh University, Jie Liang of the University of Illinois at Chicago, Arthur Olson of The Scripps Research Institute and Huan-Xiang Zhou of Florida State University.

Media Contact

Brendan M Lynch


Brendan M Lynch | EurekAlert!

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>