Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Schizophrenia: genetic alterations linked to functional changes in nerve cells


A gene that influences the communication between nerve cells has a higher mutation rate in schizophrenia patients than in healthy individuals / Previously unknown gene mutations show a functional effect in nerve cells / Parallels between genetic alterations in patients with schizophrenia and autism / Scientists from Heidelberg publish in “Molecular Psychiatry”

Researchers from Heidelberg University Hospital have identified 10 previously unknown genetic alterations (mutations) in schizophrenia patients. The affected gene defines the blueprint for a scaffolding protein, the SHANK2 protein, which plays a determinant role in the structures connecting nerve cells (neurons).

Neurons from rat brain, stained with green fluorescent dye. The SHANK2 protein (red) is located in the nerve protrusions. Dendritic spines are the point of contact between neurons.

“These 10 gene variants represent risk factors for schizophrenia”, said Prof. Dr. Gudrun Rappold, head of the Department of Molecular Human Genetics at Heidelberg University Hospital and senior author of the article. The alterations have only been found in schizophrenia patients and are not in any healthy individuals. “Mutations that are not found in healthy people could have a direct effect on the disease” says Dr. Slavil Peykov, researcher and first author of the study. The results have recently been published in the renowned scientific journal “Molecular Psychiatry”.

The protein SHANK2 is already known to Professor Rappold’s research department from another standpoint: in 2010, they identified several alterations in the SHANK2 gene in patients with autism disorders and intellectual disability. The recently identified mutations in schizophrenia patients reside in the same gene but their positions, and thus their detrimental effect, differ from those previously found in autism.

“Modifications in one gene can lead to very diverse neurobiological disorders, such as autism, intellectual disability or schizophrenia. Apparently the exact nature and position of the alteration influences the resulting neuropsychiatric disease and the gravity of the symptoms” explains Prof. Rappold. In the study, experiments with neurons revealed that these mutations alter the connections between neurons (synapses) to varying degrees, in such a way that the communication between these cells is affected.

One percent of the world’s population suffers from schizophrenia

Worldwide, approximately 1% of the population is afflicted with schizophrenia. The disease most commonly develops in early adulthood. The affected patients can rarely lead normal, independent lives without treatment, ranging from needing help with everyday tasks to a complete loss of social and professional functioning.

Schizophrenia is classified as a disorder of perception; typical symptoms are delusions and hallucinations, though symptoms and their severity vary from patient to patient. These individuals are also more likely to suffer from other disorders than the general population, such as speech deficits, addiction and depression. The exact causes and triggers of schizophrenia remain to date unknown.

In the most recently published study, the SHANK2 gene was investigated in DNA from 481 affected patients and 659 healthy controls, in collaboration with Professor Marcella Rietschel, Department of Genetic Epidemiology, Central Institute of Mental Health in Mannheim and Professor Markus Noethen, Institute of Human Genetics at the University of Bonn. Approximately twice as many genetic alterations were found in patients with schizophrenia compared to people with no psychiatric disorders. “The onset of disease is likely prompted only when further factors are also present, for example, certain environmental risk factors”, explains human geneticist Prof. Rappold.

Subdividing patient groups could facilitate individualized therapy

Early diagnosis is paramount to a satisfactory quality of life for the patient; the earlier a patient is treated, both pharmacologically and socially, the less likely they are to relapse and develop further disorders. Therefore, “our understanding of the genetic causes of this disorder could, in the future, help doctors distinguish individual patient groups suffering from similar disease courses, and consequently individualize treatment options” explains Prof. Rappold.

If scientists could find exactly which molecules in which molecular networks are faulty in the brain, precise therapies for that particular disease progression could be developed. For example, in the aforementioned 481 schizophrenia patients, 4 non-related patients were found to have an identical SHANK2 mutation. All four patients developed schizophrenia at similar time points and with similar symptoms.

If one mutation could lead to a similar set of symptoms and one treatment could correct the consequences of that mutation, the genetic screening for this mutation in potential candidates could very much improve their treatment plan. The close relationship between geneticists, neurobiologists and clinicians should now lead to a better diagnosis and to the identification of knowledge based treatments.

Contact for journalists:
Professor Dr. rer. nat. Gudrun A. Rappold
Abteilung Molekulare Humangenetik
Institut für Humangenetik
Universitätsklinikum Heidelberg
Tel.: 06221 / 56 50 59

Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching

Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 12,600 employees, training and qualification is an important issue. Every year, around 66,000 patients are treated on a fully or partially inpatient basis and over 1,000,000 patients have been treated on an outpatient basis in more than 50 clinics and departments with 1,900 beds. Currently, about 3,500 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.

Weitere Informationen: Department of Molecular Human Genetics

Julia Bird | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>