Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the scent of sweat Hohenstein Institute optimises textiles with reference to smell

30.11.2009
Anyone in professional life who wears sweaty-smelling clothing is likely to sabotage their own opportunities for advancement. Certain types of textile absorb perspiration very readily. They then distribute the smell of sweat to places right under everyone's nose, something less than beneficial, particularly if the nose happens to belong to the boss.

That is reason enough to be concerned with optimising the scent of our garments. Whether the assessment is negative or positive, making scientifically-based sensory judgements about smells emitted by textiles requires both comprehensive instrumental analyses as well as professionally trained human sniffers (sniffers or panelists). Through further development of its odour analysis programme, the Hohenstein Institute has taken a major step closer to achieving its aim of optimising garment odour.

Manufacturers of clothing worn close to the skin (e.g. sporting attire or outdoor wear, underwear or socks), work wear, personal protective clothing and home textiles, as well as shoes and shoe insoles can now, with the help of odour analysis at Hohenstein, focus their efforts on improving the smell of their products and use data gathered to co-ordinate fibre types, construction characteristics and special finishings to reduce unpleasant odours. The head of the Institute for Hygiene and Biotechnology, Prof. Dr. Dirk Höfer, emphasises, "The condition of various materials can be assessed when they are new, as well as after they've been worn, laundered or artificially soiled." As a result, the processes established at the Hohenstein Institute are not just interesting for textiles designed to reduce odours (antibacterial) or those that emit specific scents (wellness textiles), but also for the laundry detergent and cosmetics' industries for example, because they can be used for precise analysis of the emission of scents. In addition to micro-capsule finishing, laundering as a rule causes fragrances to gather in textiles. Therefore, independent product comparisons and effects of different washing processes can now be assessed with respect to the smell of the textile.

In the past, the Hohenstein Institute has evaluated antibacterial textiles that significantly reduce perspiration odour. This was done with the aid of bacterial perspiration simulation and GC/MS technology in the laboratory. The results were then used to support companies marketing products with antimicrobial effects. For a few weeks now, the scientists at Hohenstein have been in a position to carry out targeted evaluations of textile odours and scents using what is known as an olfactometer - a device to deliver odours to the noses of a group of specially trained test sniffers - in addition to analysis of particular scent molecules using GC/MS. The panelists and devices make it possible to determine precisely the concentration of a smelly substance, its intensity, and make a positive/negative evaluation (hedonic effect) (Image 1). As in the past, when it comes to evaluating smells, the "sensory panel" remains a must. In addition, the scientists at Hohenstein also use a special scent sample release device that directs a standardised volume of the scented air towards the nose of the test sniffer. This is important, for example, during field trials, when garments being worn on the right/left are compared with respect to perspiration odour. In order to take perspiration samples from their point of origin, a special scent sample extractor is used. It is deployed when negative odours must be sampled on-site at a production facility or workplace (e.g. in restaurant kitchens) and carried back to the lab for analysis in order to prevent costly customer refunds.

The Institute for Hygiene and Biotechnology has taken an even closer look at the direct effects sporting garments have on perspiration odour and human skin physiology. First, athletes were equipped with sport shirts of varying moisture permeability ("breatheability"). The breatheability of the garments was determined using the measuring methods developed at Hohenstein, DIN EN 31092 and ISO 11092. Wearing the shirts, the test athletes went through a standardised, intensive work out. Immediately upon their finishing, thermoregulatory micro-circulation data was gathered from the surface of their skin using a thermal imaging camera (thermography).

Image 2 shows the effects of a sport shirt made of cotton (left) compared to a sport shirt with a higher level of breatheability (functional fibres) just after a work out. First, intensified thermoregulatory micro-circulation of the skin and heat distribution, as influenced by the fibre and construction properties of each textile, become apparent. These data were then correlated with skin samples from physiological micro-climates (Image 3). The moisture index of the micro-climate in the underarm before the work out had values of around 60. After athletic activity and perspiration, the moisture index of the cotton shirt climbed well above 100. The differences in the volume of perspiration produced in the underarms were also reflected in the intensity of perspiration odour. The test sniffers at the olfactometer then determined the cotton test swatches placed in athletes' underarms as smelled much more intense and (hedonic) negative in comparison to the textile samples for functional fibres.

For further information on textile odour analysis at the Hohenstein Institute, please contact: Gregor Hohn, e-mail: g.hohn@hohenstein.de

Rose-Marie Riedl | idw
Further information:
http://www.hohenstein.de

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>