Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the scent of sweat Hohenstein Institute optimises textiles with reference to smell

30.11.2009
Anyone in professional life who wears sweaty-smelling clothing is likely to sabotage their own opportunities for advancement. Certain types of textile absorb perspiration very readily. They then distribute the smell of sweat to places right under everyone's nose, something less than beneficial, particularly if the nose happens to belong to the boss.

That is reason enough to be concerned with optimising the scent of our garments. Whether the assessment is negative or positive, making scientifically-based sensory judgements about smells emitted by textiles requires both comprehensive instrumental analyses as well as professionally trained human sniffers (sniffers or panelists). Through further development of its odour analysis programme, the Hohenstein Institute has taken a major step closer to achieving its aim of optimising garment odour.

Manufacturers of clothing worn close to the skin (e.g. sporting attire or outdoor wear, underwear or socks), work wear, personal protective clothing and home textiles, as well as shoes and shoe insoles can now, with the help of odour analysis at Hohenstein, focus their efforts on improving the smell of their products and use data gathered to co-ordinate fibre types, construction characteristics and special finishings to reduce unpleasant odours. The head of the Institute for Hygiene and Biotechnology, Prof. Dr. Dirk Höfer, emphasises, "The condition of various materials can be assessed when they are new, as well as after they've been worn, laundered or artificially soiled." As a result, the processes established at the Hohenstein Institute are not just interesting for textiles designed to reduce odours (antibacterial) or those that emit specific scents (wellness textiles), but also for the laundry detergent and cosmetics' industries for example, because they can be used for precise analysis of the emission of scents. In addition to micro-capsule finishing, laundering as a rule causes fragrances to gather in textiles. Therefore, independent product comparisons and effects of different washing processes can now be assessed with respect to the smell of the textile.

In the past, the Hohenstein Institute has evaluated antibacterial textiles that significantly reduce perspiration odour. This was done with the aid of bacterial perspiration simulation and GC/MS technology in the laboratory. The results were then used to support companies marketing products with antimicrobial effects. For a few weeks now, the scientists at Hohenstein have been in a position to carry out targeted evaluations of textile odours and scents using what is known as an olfactometer - a device to deliver odours to the noses of a group of specially trained test sniffers - in addition to analysis of particular scent molecules using GC/MS. The panelists and devices make it possible to determine precisely the concentration of a smelly substance, its intensity, and make a positive/negative evaluation (hedonic effect) (Image 1). As in the past, when it comes to evaluating smells, the "sensory panel" remains a must. In addition, the scientists at Hohenstein also use a special scent sample release device that directs a standardised volume of the scented air towards the nose of the test sniffer. This is important, for example, during field trials, when garments being worn on the right/left are compared with respect to perspiration odour. In order to take perspiration samples from their point of origin, a special scent sample extractor is used. It is deployed when negative odours must be sampled on-site at a production facility or workplace (e.g. in restaurant kitchens) and carried back to the lab for analysis in order to prevent costly customer refunds.

The Institute for Hygiene and Biotechnology has taken an even closer look at the direct effects sporting garments have on perspiration odour and human skin physiology. First, athletes were equipped with sport shirts of varying moisture permeability ("breatheability"). The breatheability of the garments was determined using the measuring methods developed at Hohenstein, DIN EN 31092 and ISO 11092. Wearing the shirts, the test athletes went through a standardised, intensive work out. Immediately upon their finishing, thermoregulatory micro-circulation data was gathered from the surface of their skin using a thermal imaging camera (thermography).

Image 2 shows the effects of a sport shirt made of cotton (left) compared to a sport shirt with a higher level of breatheability (functional fibres) just after a work out. First, intensified thermoregulatory micro-circulation of the skin and heat distribution, as influenced by the fibre and construction properties of each textile, become apparent. These data were then correlated with skin samples from physiological micro-climates (Image 3). The moisture index of the micro-climate in the underarm before the work out had values of around 60. After athletic activity and perspiration, the moisture index of the cotton shirt climbed well above 100. The differences in the volume of perspiration produced in the underarms were also reflected in the intensity of perspiration odour. The test sniffers at the olfactometer then determined the cotton test swatches placed in athletes' underarms as smelled much more intense and (hedonic) negative in comparison to the textile samples for functional fibres.

For further information on textile odour analysis at the Hohenstein Institute, please contact: Gregor Hohn, e-mail: g.hohn@hohenstein.de

Rose-Marie Riedl | idw
Further information:
http://www.hohenstein.de

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>