Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scary ancient spiders revealed in 3-D models, thanks to new imaging technique

07.08.2009
Early relatives of spiders that lived around 300 million years ago are revealed in new 3-D models, in research published today in the journal Biology Letters
Early relatives of spiders that lived around 300 million years ago are revealed in new three-dimensional models, in research published today in the journal Biology Letters.
Scientists at Imperial College London have created detailed 3D computer models of two fossilised specimens of ancient creatures called Cryptomartus hindi and Eophrynus prestvicii, closely related to modern-day spiders. The study reveals some of the physical traits that helped them to hunt for prey and evade predators.

The researchers created their images by using a CT scanning device, which enabled them to take 3,000 x-rays of each fossil. These x-rays were then compiled into precise 3D models, using custom-designed software.

Both Cryptomartus hindi and Eophrynus prestivicii were around the size of a 50 pence piece and they roamed the Earth during the Carboniferous period, 359 – 299 million years ago. This was a time before the dinosaurs, when life was emerging from the oceans to live on land. During this period, the world's continents were merging together near the equator to form one supercontinent and the first tropical rainforests were playing host to a diverse range of species.

Previous studies of the fossilised remains of Cryptomartus hindi allowed scientists to see some features of the creature, which had four pairs of legs and looked similar to a spider.

In the new study, the researchers' computer models reveal that Cryptomartus hindi's first two legs were angled towards the front of the body, which suggests that it used its legs to grab its prey before killing them. The researchers believe this find suggests the Cryptomartus hindi was an ambush predator, living in logs and fronds, waiting for prey such as insects to walk by before catching and killing them. This stance is seen in modern day crab spiders, which sit on the edge of flowers and wait for insects to land so that they can grab them.

The scientists also discovered that Cryptomartus hindi had ball-like growths at the base of its limbs, called coxal endites. The scientists believe the coxal endites could be an evolutionary hang-over from their last common ancestor, who probably used the growths at the base of their limbs to help them grind their food. These coxal endite-type growths can still be seen today in species such as horseshoe crabs, which use them to grind up their prey before pushing it into their backward-facing mouths.

The computer models also revealed that Cryptomartus hindi's mouth appendages, called pedipalps, had tiny 'tarsal' claws attached at the end to help the creature to manipulate its prey. These claws are seen in rare modern-day arachnids such as the Ricinulei. The researchers say that the existence of this common physical feature, shared by the Cryptomartus hindi and the Ricinulei, lends further weight to the theory that they are closely related.

The models also reveal new information about Eophrynus prestivicii. Previous studies of fossilised remains of this creature suggested that it could have hunted on the open forest floor. It had long legs that enabled it to run through leaf litter to chase, catch and kill its prey.

The new models reveal, for the first time, that Eophrynus prestivicii had defensive spikes on its back. The researchers say that the spikes may have been a defensive adaption by Eophrynus prestivicii, to make them a less tempting meal for the amphibians that would have recently emerged from the oceans onto land.

The study's lead author, Mr Russell Garwood, PhD student from the Department of Earth Science and Engineering at Imperial College London, says:

"Our models almost bring these ancient creatures back to life and it's really exciting to be able to look at them in such detail. Our study helps build a picture of what was happening during this period early in the history of life on land. We think one creature could have responded to increasing predation from the amphibians by growing spikes, while the other responded by becoming an ambush predator, hiding away and only exposing itself when it had to come out to eat."

At present, most palaeontologists analyse fossils by splitting open a rock and looking at the creatures encased inside. This means that scientists can often only see part of the fossil and cannot explore all of the fossil's physical features.

The researchers believe their new technique could be used to re-explore previously analysed fossils to provide a much clearer picture of how ancient extinct species survived on early Earth.


For further information please contact:

Colin Smith
Press Officer
Imperial College London
Email: cd.smith@imperial.ac.uk
Tel: +44 (0)207 594 6712
Out of hours duty press officer: +44 (0)7803 886 248

Notes to editors:

1. *** Images and 3 D models ***

CT scanning was carried by Mr Garwood at the Natural History Museum, London, and modelling was carried out at Imperial College London. All images must be credited:

"Courtesy of the Natural History Museum and Imperial College London."

Cryptomartus hindi - video


Eophrynus prestivicii - video


Cryptomartus hindi - image


Cryptomartus hindi - image


Eophrynus prestivicii - image


Eophrynus prestivicii - image


2. "High-fidelity X-ray micro-tomography reconstruction of siderite-hosted Carboniferous arachnids", Biology Letters, Wednesday 05 August 2009.

Russell Garwood (1), Jason Dunlop (2) and Mark D. Sutton (1)
(1) Department of Earth Science and Engineering, Imperial College London

(2) Museum fur Naturkunde at the Humbolt University Berlin, 10115 Berlin, Germany

3. About Imperial College London

Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 13,000 students and 6,000 staff of the highest international quality.

Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve health in the UK and globally, tackle climate change and develop clean and sustainable sources of energy.

Colin Smith | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>