Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saving the Brain's White Matter with Mutated Mice

18.08.2010
TAU develops genetically mutated stem cells for myelin research

Vanishing White Matter (VWM) disease is a devastating condition that involves the destruction of brain myelin due to a mutation in a central factor.

To understand the disease and test potential treatments that could apply to other disorders, such as multiple sclerosis, Prof. Orna Elroy-Stein of Tel Aviv University's Department of Cell Research and Immunology is leading a scientific breakthrough by developing laboratory mice which carry the VWM mutation — an important new tool.

The mice harbor a mutation of the eIF2B enzyme, which regulates protein synthesis in every cell throughout the body. The key to the new development, says Prof. Elroy-Stein, was the use of genetically-engineered embryonic stem cells to introduce the mutation.

The brain is made up of two components: grey matter, or nerves, and white matter, or glial cells which support the nerves and produce myelin, which wraps around and protects nerve extensions. Recently described in the prestigious journal Brain, the creation of these mutated mice allows for new research on VWM diseases, which trigger loss of myelin in the brain, leading to paralysis and possible death.

A new breed of mouse and man

Until now, VWM researchers did not have a comparable animal model with which to study the disease. Now, for the first time, researchers can use a living organism to follow the exact process of myelin destruction, providing valuable information about the molecular mechanisms of the disease, which are currently unknown.

The big surprise in this discovery, she says, is that the gene mutation impacts only the white matter of the brain, rather than causing disease throughout the body. This will allow researchers to learn about myelin formation and maintenance.

"For the first time ever, we can follow the regulated expression of the protein components of myelin," explains Prof. Elroy-Stein, whose techniques include magnetic resonance imaging to investigate what's happening in the brains of the mice.

Not only will this discovery lead to a greater understanding of diseases that affect the brain's white matter, the mice are also an invaluable testing ground for new treatments. But according to Prof. Elroy-Stein, understanding the disease is the first step. "In order to develop effective therapies, one has to understand the mechanisms," she says.

Prof. Elroy-Stein notes that this is an entirely TAU-led project. The team of researchers include her Ph.D. students Michal Geva, Yuval Cabilly, Liraz Marom, Nina Mindroul, and Gali Raini; lab technician Dalia Pinchasi; and Dr. Yaniv Assaf of Tel Aviv University's Department of Neurobiology.

Keep up with the latest AFTAU news on Twitter: http://www.twitter.com/AFTAUnews

George Hunka | EurekAlert!
Further information:
http://www.aftau.org
http://www.aftau.org/site/News2?page=NewsArticle&id=12719

Further reports about: Elroy-Stein Mice Saving VWM embryonic stem cell matter molecular mechanism

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>