Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Save messengers -- modified mRNAs open up new therapeutic possibilities

08.02.2011
Defects in the genome are the cause of many diseases. Gene therapy – direct replacement of mutant genes by intact DNA copies – offers a means of correcting such defects.

Now a research team based at the Medical Center of the University of Munich, and led by Privatdozent Dr. Carsten Rudolph, has taken a new approach that avoids DNA delivery. The team shows for the first time that chemical modification of mRNAs (the metabolically active molecules derived from genomic DNA that programs protein synthesis) provides a promising alternative to DNA-based procedures.

In contrast to the latter, the modified RNAs do not increase the risk of cancer, and do not induce frequently observed severe immune reactions seen with DNA or unmodified mRNA. The researchers show that the new method is life-saving in mice with a congenital lethal lung defect. "These results clearly demonstrate the therapeutic potential of our mRNAs," says Rudolph. (Nature Biotechnology, 7 February 2011)

Gene therapy offers great potential for the treatment of both congenital and acquired diseases that are otherwise not amenable to other treatments. However, the approaches that have been tested so far are associated with serious side-effects. The use of engineered viruses to introduce intact genes into the cellular genome are associated with an increased risk of developing leukaemia, and can provoke strong immune reactions. Nonviral vectors, on the other hand, tend to be inefficient delivery vehicles. The new RNA-based method displays neither of these disadvantages. "Chemical modification of the mRNA prevents it from activating the immune system, so that no inflammatory reaction ensues," says Rudolph. "Furthermore, in contrast to conventional mRNA, the modified mRNA can be administered repeatedly, is more stable and is effective at very low doses."

The new method, referred to as Transcript Therapy by its inventors, opens up new opportunities for targeted treatments. The modified mRNAs shuttle genetic information into cells in a form that can be used directly for the production of therapeutically active proteins. In addition to their potential for the treatment of genetic diseases, they represent an alternative to established protein-based treatment regimes. The researchers demonstrated the efficacy of the latter application in a mouse model. A single intramuscular injection of mRNAs coding for the hormone erythropoetin, which stimulates the differentiation of red blood cells, led to a significant increase in erythrocyte counts four weeks later.

The team also employed a mouse model to show that the technique can effectively be used to treat a genetic disease. For this, they chose a strain with a lethal congenital lung defect, caused by its inability to make surfactant protein B (SP-B). Regular application of mRNA for SP-B, as an aerosol, to the lungs of the mutant mice restored lung function, and the effect persisted for the duration of the study. Rudolph sees great scope for transcript therapy in regenerative medicine and the treatment of metabolic diseases, and hopes to test the efficacy of modified mRNAs in a clinical setting over the next few years.

Publication:
Expression of therapeutic proteins after delivery of chemically modified mRNA in mice
Kormann MS, Hasenpusch G, Aneja MK, Nica G, Flemmer AW, Herber-Jonat S, Huppmann M, Mays LE, Illenyi M, Schams A, Griese M, Bittmann I, Handgretinger R, Hartl D, Rosenecker J, Rudolph C.
Nature Biotechnology, XX. February 2011
doi: 10.1038/nbt.1733

Dr. Carsten Rudolph | EurekAlert!
Further information:
http://www.uni-muenchen.de

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>