Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sanford-Burnham Scientists Identify Natural Compound that Inhibits Cancer Cell Migration

19.02.2010
Molecule found in sea sponges may help control metastasis

Investigators at Sanford-Burnham Medical Research Institute (Sanford-Burnham, formerly Burnham Institute for Medical Research) led by Kristiina Vuori, M.D., Ph.D., have discovered that the natural compound sceptrin, which is found in marine sponges, reduces cancer cell motility (movement) and has very low toxicity.

Metastasis is one of the deadliest aspects of cancer, so restricting aberrant cell movement is an important step towards advancing treatments. The research was published online in ACS Chemical Biology, in collaboration with Phil S. Baran, Ph.D., of The Scripps Research Institute.

The team tested sceptrin in multiple tumor cell types, including cervical, breast and lung cancers. Sceptrin restricted motility in all cell lines. Further tests showed the compound works by limiting the cells’ ability to contract, a critical function for cell motility. The researchers also found that sceptrin synthesized in the laboratory was just as effective at combating motility as the naturally-derived compound.

“Given the recently achieved synthesis of sceptrin in multi-gram quantities by the Baran laboratory, sceptrin could prove to be an attractive lead molecule for further preclinical testing and development for therapeutic purposes,” said Dr. Vuori. “It may also prove to be a useful research tool in order to elucidate the mechanisms involved in cell motility.”

The researchers cultured growing cancer cells with growth factor to encourage motility. These cells were treated with varying amounts of sceptrin, which was found to be more effective at increased concentrations. Subsequently, the team conducted apoptosis and cell proliferation studies to determine whether these mechanisms accounted for the decrease in motility of sceptrin-treated cells. Other assays determined that sceptrin limits motility by reducing cell contractility.

Josh Baxt | EurekAlert!
Further information:
http://www.burnham.org

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>